Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.

Slides:



Advertisements
Similar presentations
Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Hyperfine-Changing Collisions of Cold Molecules J. Aldegunde, Piotr Żuchowski and Jeremy M. Hutson University of Durham EuroQUAM meeting Durham 18th April.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Ultra-Cold Matter Technology Physics and Applications Seth A. M. Aubin University of Toronto, Canada June 15, 2006 NRC, Ottawa.
Guillermina Ramirez San Juan
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
1 Cold molecules Mike Tarbutt LMI Lecture, 05/11/12.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Quantum Devices (or, How to Build Your Own Quantum Computer)
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Physics & Ultra-Cold Matter Seth A. M. Aubin Dept. of Physics College of William and Mary December 16, 2009 Washington, DC.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Progress Towards Formation and Spectroscopy of Ultracold Ground-state Rb 2 Molecules in an Optical Trap H.K. Pechkis, M. Bellos, J. RayMajumder, R. Carollo,
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Tunable Molecular Many-Body Physics and the Hyperfine Molecular Hubbard Hamiltonian Michael L. Wall Department of Physics Colorado School of Mines in collaboration.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Chapter 8. Molecular Motion and Spectroscopy
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Agenda Brief overview of dilute ultra-cold gases
Maykel L. González-Martínez Laurent Bonnet and Pascal Larrégaray Statistical Product-State Distributions for Cold Exoergic Reactions in External Fields.
Making cold molecules from cold atoms
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Ultracold polar molecules in a 3D optical lattice
Energy Transfer in a Trapped Gas of NH Molecules Heather Lewandowski, JILA / Department of Physics, University of Colorado The process of breaking one.
Presentation transcript:

Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules

Strong dipolar interactions: Long range and anisotropic Controllable by electromagnetic fields Why polar molecules?? Polar molecules JILA: Currently only laboratory in the world with a quantum dipolar gas in a lattice Many to come: Innsbruck, JQI, MIT, Columbia, Amsterdam, Kyoto…

Atom vs. molecule T = 100 nK N = 10 6 atoms n = cm -3 Bose-Einstein Condensation 1995 Molecules (pre-2008): T = 100 mK, n = 10 6 cm -3

Molecules are complex! 0.1 K 38 μK 6000 K 10 orders of magnitude nK vibration binding energy rotation hyperfine translation 1 μK trap depth 100 K

KRb, LiCs, RbCs, NaK, LiNa, LiRb, RbSr, RbYb and LiYb Two paths to ultra-cold molecules Stark deceleration Buffer-gas cooling Laser cooling? Polarization cooling? Sympathetic cooling? Evaporative cooling? SrF YO BrO CH NO OH CH 3 F

KRb molecules (Dipole ~0.5 Debye) K. Ni et al., Science 322, 231 (2008). Nature Phys. 4, 622 (2008) Science 322, 231 (2008) 40 K Fermions 87 Rb Bosons K. Ni et al., Science 322, 231 (2008). KRb molecules Ro-vibrational ground state  T/T F ~ 1  Density ~10 12 /cm 3 (Dipole ~0.5 Debye) 10 5 times colder, 10 6 times more dense than other results for polar molecules! Light provides the answer Photons carry away the energy!

Start with ultracold atoms. 40 K 87 Rb K-Rb Feshbach resonance Make large, floppy molecules Convert a pair of atoms into a molecule Control the interactions. Coherent two-photon transfer 11 22 33 11 33 11 Inter-nuclear distance R Energy v = 0, N = 0, J = K

Pauli Exclusion principle (2) Angular momentum is quantized: Ultra cold atoms collide via the lowest partial waves (3) Quantum statistics matter Identical fermions  anti- symmetric spatial wave function  p-wave (1) Particles behave like waves (T → 0) s-wave, l=0, Spatially symmetric p-wave, l=1 Spatially anti- symmetric R Centrifugal barrier

KRb+ KRb  K 2 +Rb 2 + Ultracold chemistry At low T, the quantum statistics of fermionic molecules suppresses chemical reaction rate! Energy distance between the molecules quantum Ospelkaus et al., Science 327, 853 (2010).

Temp. (  K) β (p-wave) ∝ T β (s-wave) 24K

-1.5 kV +1.5 kV E = 0 (no induced dipoles)  p-wave suppression Dipolar interaction “turns on” collisions - anisotopic, long range K.-K. Ni et al., Nature 464, 1324 (2010).

Rigid Rotor N=0 ~GHz N=1 E=0 Increasing E |1,-1  |1,0  |1,1  |0,0  Electric field mixes rotational states but preserves M N projection |↓|↓ |↑|↑ E induces a dipole moment

R E Attract Repel Virtual exchange of photons |1,-1  |1,0  |1,1  |0,0  |1,-1  |1,0  |1,1  |0,0  i j plane

Collisions in 3D space average over different channels. m L = +1, -1 m L = 0 p-wave barrier E

~ d 6 (Attractive dipole dipole interaction) miliseconds lifetime

Possibility of observing quantum magnetism even at current conditions: PRL 110, (2013) 3D Trap Lifetime Trapping miliseconds Low density: filling 0.1 PRL 108, (2012) Pancakes: 2Dseconds Nature Phys. 7, 502 (2011) E 3D lattice Up to 25 s Tubes: 1D seconds

PRL (2011), PRA 84, (2011)  Use direct dipole-dipole interaction to generate direct strong spin-spin interactions:  Spin temperature, not motional temperature matters: Decoupling between motional and spin degrees of freedom Long range spin-spin interactions even in frozen molecules

Project on the two selected rotational levels Two rotational states chosen to encode spin 1/2 ~ GHz N=1 |1,-1  |1,0  |1,1  N=0 |0,0  |↑|↑ |↓|↓ |↑|↑ ~ ~ ~ ~ ~ ~ Reduced by a factor of two!!

Non-trivial dependence on the geometry due to the anisotropic dipolar interactions. V 0j Nature 501, 521 (2013). Current experiments are carried out in a 3D lattice with a B field Use rotational state choice to control interaction strength

V  : p-wave int U  : s-wave int x y z V  : p-wave int U  : s-wave int Prepare all down and then apply a microwave pulse No dynamics No interactions Interactions introduce correlations?  # of ↑ Measure

 Measure # of e particles  e-atoms B=2  L     Detuning Contrast Ramsey spectroscopy: a quench Prepare Evolve T Measure Phase

Ramsey fringe: C(T) cos  )T] Contrast Phase   controlled by first pulse Spin precesses with a modified rate which depends on molecule number. No mean field dynamics at  x y z B eff j

Nature 501, 521 (2013).

Wahuha + echo echo Learn from NMR: By applying the proper pulse sequence it is possible to eliminate dipolar interactions. Pulse scheme for KRb Non-magic trap

Need to compare to theory, but looks impossible Strongly interacting and non-equilibrium disordered system Long-range interactions, 3D [ 10 4 particles talking to each other] Mean field prediction: nothing happens! We came up with a way: Improved cluster expansion MACE arXiv: K. Hazzard et al

Used before Spins grouped in cluster of max size g. Intra-cluster interactions kept and solved exactly Inter-cluster interactions neglected. g=4 Ours: MACE “Moving Average Cluster Expansion”

Contrast Exact solution XX oscillates more

Akjdfklsajdlkf; arXiv: K. Hazzad et al With only one fitting parameter to determine the density we are able to reproduce the experiment Quantum simulation Theory Improves Experiment Improves Theory (MACE) Experiment Contrast |1,-1  |1,0  |1,-1  |1,0 

Hyperfine levels E field + microwaves Other molecules

Theory: Jun Ye S. Syzranov, A. Gorshkov, M. Foss-Feig, S. Manmana, M. Lukin, P. Julienne K. Hazzard, M. Wall, A. Koller, B. Zhu, A. Pirovski, S. Li, J. Schachenmayer D. Jin B. Gadway B. Yan J. Covey S. Moses KRb team:

Review Material G. Quéméner and P. S. Julienne, Ultracold molecules under control, Chemical Reviews. 112(9), 4949–5011, (2012). M. L. Wall, K. R. A. Hazzard, A. M. Rey Quantum magnetism with ultracold molecules, arXiv: L. D. Carr, D. Demille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology, and applications, New J. Phys. 11, , (2009).