Cheng Zhao Supervisor: Charling Tao

Slides:



Advertisements
Similar presentations
Seeing Dark Energy (or the cosmological constant which is the simplest form of DE) Professor Bob Nichol (ICG, Portsmouth)
Advertisements

Dark Energy BAO Intensity Mapping T. Chang, UP, J. Peterson, P. McDonald PRL 100, (March 5, 2008) UP, L. Staveley-Smith, J. Peterson, T. Chang arXiv:
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
The Physics of Large Scale Structure and New Results from the Sloan Digital Sky Survey Beth Reid ICC Barcelona arXiv: arXiv: * Colloborators:
CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Cosmology Overview David Spergel. Lecture Outline  THEME: Observations suggest that the simplest cosmological model, a homogenuous flat universe describes.
Cosmology Zhaoming Ma July 25, The standard model - not the one you’re thinking  Smooth, expanding universe (big bang).  General relativity controls.
What is Dark Energy? Josh Frieman Fermilab and the University of Chicago.
CMB as a physics laboratory
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
1 What is the Dark Energy? David Spergel Princeton University.
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
Once and Future Redshift Surveys UK National Astronomy Meeting 8 April 2005 Matthew Colless Anglo-Australian Observatory.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 SDSS slideshow.
X-ray Optical microwave Cosmology at KIPAC. The Survey 5000 square degrees (overlap with SPT and VISTA) Five-band (grizY) + VISTA (JHK) photometry to.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration.
The Dark Universe: Cosmology Andrew Jaffe Imperial College IOP HEPP/APP 2010 March
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Robust cosmological constraints from SDSS-III/BOSS galaxy clustering Chia-Hsun Chuang (Albert) IFT- CSIC/UAM, Spain.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Anadian ydrogen ntensity apping xperiment CHIMECHIME CHIMECHIME WiggleZ Dark Ages Stars 13.7Gy CMB Big Bang Reionization 1100 z∞ SDSS 7Gy CHIME.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
the National Radio Astronomy Observatory – Socorro, NM
Ignacy Sawicki Université de Genève Understanding Dark Energy.
A. Ealet, S. Escoffier, D. Fouchez, F. Henry-Couannier, S. Kermiche, C. Tao, A. Tilquin September 2012.
Using Baryon Acoustic Oscillations to test Dark Energy Will Percival The University of Portsmouth (including work as part of 2dFGRS and SDSS collaborations)
The Statistical Properties of Large Scale Structure Alexander Szalay Department of Physics and Astronomy The Johns Hopkins University.
L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters Dick Bond.
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
MEASUREING BIAS FROM UNBIASED OBSERVABLE SEOKCHEON LEE (KIAS) The 50 th Workshop on Gravitation and Numerical INJE Univ.
Theoretical Perspectives on Cosmology and Cosmic Dawn Scott Dodelson: Science Futures in the 2020s.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Neutrinos and Large-Scale Structure
BAO Damping and Reconstruction Cheng Zhao
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
Dark Energy From the perspective of an American theorist fresh from the recent Dark Energy Survey Collaboration Meeting Scott Dodelson.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological analysis of the DR12 galaxy sample arXiv:
The Cosmic Microwave Background and the WMAP satellite results
Standard ΛCDM Model Parameters
Cosmology from Large Scale Structure Surveys
Images: M. Blanton. Images: M. Blanton Figures: M. Blanton & SDSS.
Detection of integrated Sachs-Wolfe effect by cross-correlation of the
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Measurements of Cosmological Parameters
CMB Anisotropy 이준호 류주영 박시헌.
6-band Survey: ugrizy 320–1050 nm
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Cheng Zhao Supervisor: Charling Tao Cosmological parameter constraints and large scale structure of the universe Cheng Zhao Supervisor: Charling Tao

Outline Introduction Probes Large scale structure Perturbation theory References

Standard cosmological model Introduction Standard cosmological model Hot Big Bang cosmology with primordial fluctuations that are adiabatic and Gaussian. (Consistent with CMB measurements) Wikipedia.org

Outline Introduction Probes Large scale structure Perturbation theory References

Probes Overview Cosmic microwave background (CMB) Supernova Temperature anisotropy Polarization Supernova Large scale structure (LSS) Geometry Structure growth …

Probes CMB Geometry (curvature) Age Composition Primordial fluctuation Inflation … http://www.esa.int/spaceinimages/Images

Supernova – standard candle Probes Supernova – standard candle Hubble parameter Dark energy … Wikipedia.org

Large scale galaxy survey Probes Large scale galaxy survey Baryon Acoustic Oscillations (BAO, standard ruler) Redshift space distortion (RSD) Matter fluctuations/density CDM or WDM? Galaxy bias Dark energy Neutrino mass Non-Gaussianity … http://www.sdss3.org

Gravitational lensing Probes Gravitational lensing Mass power spectrum Matter fluctuation/density … Wikipedia.org

Probes Combination Supernova Cosmology Project

Probes Parameterization 13 basic parameters 𝜏 Reionization optical depth 𝐴 𝑠 Scalar fluctuation amplitude 𝜔 𝑏 Baryon density 𝑛 𝑠 Scalar spectral index 𝜔 𝑑 Dark matter density 𝛼 Running of spectral index 𝑓 𝜈 Dark matter neutrino fraction 𝑟 Tensor-to-scalar ratio Ω Λ Dark energy density 𝑛 𝑡 Tensor spectral index 𝑤 Dark energy equation of state 𝑏 Galaxy bias factor Ω 𝑘 Spatial curvature Tegmark et al. 2004

Derived parameters (CMB) Probes Parameterization Derived parameters (CMB) 𝑧 ion Reionization redshift (abrupt) 𝑡 0 Age of universe 𝜔 𝑚 Physical matter density 𝜎 8 Galaxy fluctuation amplitude Ω 𝑚 Matter density/critical density 𝑍 CMB peak suppression factor Ω tot Total density/critical density 𝐴 𝑝 Amplitude on CMB peak scales 𝐴 𝑡 Tensor fluctuation amplitude Θ 𝑠 Acoustic peak scale 𝑀 𝜈 Sum of neutrino masses 𝐻 2 2nd to 1st CMB peak ratio ℎ Hubble parameter 𝐻 3 3rd to 1st CMB peak ratio 𝛽 Redshift distortion parameter 𝐴 ∗ Amplitude at pivot point Tegmark et al. 2004

Probes Planck 2013 data release In combination with WMAP polarized CMB data at low ℓs, and CMB data from ACT and SPT at high ℓs: Matches well with minimal ΛCDM model, with “vanilla” 6 parameters: { 𝜔 𝑏 , 𝜔 𝑚 , ℎ, 𝜏, 𝑛 𝑠 , 𝐴 𝑠 }. No preference for extending models. Planck Collaboration, 2013 & Costanzi et al. 2014

Probes SDSS-III BOSS DR11 Geometry ( 𝐷 𝐴 , 𝐻) and structure growth (𝑓∙ 𝜎 8 ). Consistent with Planck prediction within ΛCDM. Total neutrino mass 𝑀 𝜈 =0.36±0.10 eV, higher than 𝑀 𝜈 <0.23 eV of Planck. 2𝜎 tension of growth index 𝛾 from ΛCDM-GR prediction, in combination with Planck/WMAP9. Beutler et al, 2014 & Sanchez et al. 2014

Probes BICEP2 Measured 𝑟=0.2±0.06 (Tensor-to-scalar ratio), higher than 𝑟<0.11 without running spectral index of Planck. B-mode polarization or dust polatization? BICEP2 Collaboration, 2014

Outline Introduction Probes Large scale structure Perturbation theory References

Large Scale Structure Probes Large scale galaxy survey Angular galaxy survey (model dependent) Gravitational lensing Lyman-α forest Hydrogen 21 cm emission line Quasar Clustering Useful tool: N-body numerical simulation (covariance matrix & galaxy bias)

Large Scale Structure Observations Photometric Spectroscopic Spitzer Dark Energy Survey (DES) The VLT FIRST survey Large Synoptic Survey Telescope (LSST) Spectroscopic 2/6-degree Field Galaxy Redshift Survey CfA redshift survey DEEP2 redshift survey European Southern Observatory Slice Project (ESP) Sloan Digital Sky Survey (SDSS)

Large Scale Structure eBOSS Transition from deceleration to acceleration (𝐻(𝑧)) Structure growth (test of GR-ΛCDM) Neutrinos QSO/galaxy science … http://www.sdss3.org/future/eboss.php

Large Scale Structure Statistics 2-point correlation function 𝑑𝑃= 𝑛 1+𝜉 𝑟 𝑑𝑉 𝜉 𝑟 = 𝛿 𝒙 𝛿(𝒙+𝒓) , 𝛿=𝜌/ 𝜌 −1 𝜉= 1 𝑅𝑅 𝐷𝐷 𝑛 𝑅 𝑛 𝐷 2 −2𝐷𝑅 𝑛 𝑅 𝑛 𝐷 +𝑅𝑅 Power spectrum 𝜉 𝑟 = 𝑑 3 𝒌 𝑃 𝑘 exp (𝑖𝒌∙𝒓) 𝛿( 𝒌 1 )𝛿( 𝒌 2 ) 𝑐 = 𝛿 𝐷 𝒌 1 + 𝒌 2 𝑃( 𝒌 1 )

Large Scale Structure Statistics Higher order statistics 3-point correlation function & bispectrum 4-point correlation function & trispectrum … Anisotropic statistics 𝑃 ℓ (𝑘)≡ 2ℓ+1 2 −1 1 𝑑𝜇 𝑃(𝑘,𝜇) 𝐿 ℓ (𝜇)

Large Scale Structure BOSS result Anderson et al, 2012

Baryon Acoustic Oscillation (BAO) Large Scale Structure Baryon Acoustic Oscillation (BAO) https://www.cfa.harvard.edu/~deisenst/acousticpeak/acoustic_physics.html

Large Scale Structure Redshift space de Lapparent V. et al, 1986

Large Scale Structure Redshift space Kaiser Effect & Fingers of God Hamilton 1998

Redshift space distortion Large Scale Structure Redshift space distortion 2dFGRS BOSS Peacock et al, 2001 Samushia et al, 2014

Large Scale Structure Galaxy bias http://www.astr.ua.edu/keel/galaxies/largescale.html

Large Scale Structure Galaxy bias Relation between galaxy density and dark matter density: 𝛿 𝑔 =𝑓( 𝛿 DM ) Linear estimation: 𝑏= 𝛿 𝑔 / 𝛿 DM

Estimate of galaxy bias Large Scale Structure Estimate of galaxy bias 2-point correlation function of galaxies and dark matter (N-body simulation): 𝑏= 𝜉 𝑔 / 𝜉 DM 1/2 Ratio of 2-point and 3-point correlation functions, which have different dependencies on the bias. (Noisy)

N-body numerical simulation Large Scale Structure N-body numerical simulation Trace dark matter particles (and baryons). Input: Linear power spectrum from CMB Gaussian random primordial fluctuation Cosmological parameters Initial conditions from perturbation theory Dynamics: Tree algorithm Particle-Mesh (PM) algorithm Hybrid methods (AP3M, AMR, etc.)

Outline Introduction Probes Large scale structure Perturbation theory References

Dynamics of gravitational instability Perturbation Theory Dynamics of gravitational instability Assumption: collisionless cold dark matter (CDM). Discrete effects such as 2-body relaxation are negligible Non-relativistic Comoving coordinates 𝒙, conformal time 𝜏, and conformal expansion rate ℋ: 𝒓=𝑎 𝜏 𝒙 𝑑𝑡=𝑎 𝜏 𝑑𝜏 ℋ≡𝑑 ln 𝑎 /𝑑𝜏=𝐻𝑎

Dynamics of gravitational instability Perturbation Theory Dynamics of gravitational instability Peculiar velocity 𝒖: 𝒗 𝒙,𝜏 ≡ℋ𝒙+𝒖(𝒙,𝜏) 𝒑=𝑎 𝑚 𝒖 Cosmological gravitational potential Φ: 𝐺 𝑑 3 𝒙 ′ 𝜌( 𝒙 ′ ) 𝒙 ′ −𝒙 =𝜙 𝒙,𝜏 ≡− 1 2 𝜕ℋ 𝜕𝜏 𝑥 2 +Φ(𝒙,𝜏) Poisson equation: 𝛻 2 Φ 𝒙,𝜏 = 3 2 Ω 𝑚 𝜏 ℋ 2 𝜏 𝛿(𝒙,𝜏)

Perturbation Theory Vlasov equation Particle number density in phase space 𝑓(𝒙,𝒑,𝜏): 𝑑𝑓 𝑑𝜏 = 𝜕𝑓 𝜕𝜏 + 𝒑 𝑚𝑎 ∙𝛻𝑓−𝑎 𝑚 𝛻Φ∙ 𝜕𝑓 𝜕𝒑 =0

Perturbation Theory Lagrangian dynamics Initial position 𝒒 and displacement field 𝜳(𝒒,𝜏): 𝒙 𝜏 =𝒒+𝜳(𝒒,𝜏) Equation of motion: 𝑑 2 𝒙 𝑑 𝜏 2 +ℋ 𝜏 𝑑𝒙 𝑑𝜏 =−𝛻Φ Poisson equation: 𝛻 𝑥 2 Φ=−𝛻∙ 𝑑 2 𝜳 𝑑 𝜏 2 +ℋ 𝜏 𝑑𝜳 𝑑𝜏 = 3 2 Ω 𝑚 (𝜏) ℋ 2 (𝜏)𝛿(𝒙,𝜏) 𝛻 𝑥 𝑖 = 𝛿 𝑖𝑗 𝐾 +𝜕 𝜳 𝑖 /𝜕 𝒒 𝑗 −1 𝛻 𝑞 𝑗

Lagrangian perturbation theory Zel’dovich Approximation (ZA) 𝜓 ZA ≡𝛻∙ 𝜳 ZA =− 𝐷 1 𝜏 𝛿 (1) (𝒒) 2-order Lagrangian PT (2LPT) 𝜓 2LPT ≡𝛻∙ 𝜳 2LPT =− 𝐷 1 𝜏 𝛿 1 𝒒 + 𝐷 2 𝜏 𝛿 2 𝒒 Spherical collapse (SC) 𝜓 SC ≡𝛻∙ 𝜳 SC =3 1− 2 3 𝐷 1 𝜏 𝛿 (1) (𝒒) 1/2 −1

Perturbation Theory Cosmic web Density field: Jacobian 𝐽: 𝜌 1+𝛿 𝒙 𝑑 3 𝑥= 𝜌 𝑑 3 𝑞 Jacobian 𝐽: 1+𝛿 𝒙,𝜏 = 1 Det( 𝛿 𝑖𝑗 𝐾 +𝜕 𝜳 𝑖 /𝜕 𝒒 𝑗 ) ≡ 1 𝐽(𝒒,𝜏) Local density field (ZA): 1+𝛿 𝒙,𝜏 = 1 1− 𝜆 1 𝐷 1 (𝜏) 1− 𝜆 2 𝐷 1 (𝜏) 1− 𝜆 3 𝐷 1 (𝜏) 𝜆 1 , 𝜆 2 , 𝜆 3 : eigenvalues of tidal tensor 𝜳 𝑖,𝑗 .

Perturbation theory Cosmic web All positive: knot 2 positive and 1 negative: sheet 1 positive and 2 negative: filament All negative: void Knot Sheet/Filament Void

Perturbation Theory Cosmic web

References Anderson L. et al., MNRAS. 427. 3435A, 2012 Bernardeau F. et al., PhR. 367. 1B, 2002 Beutler F. et al., MNRAS. 443. 1065B, 2014 BICEP2 Collaboration, PRL. 112, 2014 Coil Alison L., Planets, Stars and Stellar Systems Vol. 6, 2013 Costanzi M. et al., arXiv1407.8338, 2014 de Lapparent V. et al., ApJ. 302L, 1986 Hamilton A. J. S., ASSL. 231. 185H, 1998 Hu J-W. et al., JCAP. 05. 020H, 2014 Peacock J. A. et al., Nature 410. 169P, 2001 Percival W. J., arXiv:1312.5490, 2013 Planck Collaboration, 2013 results. Samushia L. et al., MNRAS. 439. 3504S, 2014 Sanchez A. et al., MNRAS. 440. 2692S, 2014 Tegmark M. et al., PhysRevD. 69. 103501, 2004 Viel M. et al., MNRAS. 339L. 39V, 2009