Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug Petkie, Ivan Medvedev, Department of Physics, Wright State University and Frank C. De Lucia Department of Physics, Ohio State University 70 th ISMS, Urbana-ChampaignJune 26, 2015
Outline Introduction and overview Experimental details Details of each state analyzed Brief update of 9 Comparison with infrared studies of the unperturbed 7 and 8 Analysis of the perturbed 6 and 2 9 Preliminary analysis of the perturbed 5 and 7 9 Conclusion
Vibrational Energies of DNO 9 99 cm -1 7 9 DNO 3 HNO 9 cm -1 a = 2.09 D b = 0.59 D ≈ 0.52 DNO 3 HNO 3 a = 1.98 D b = 0.88 D ≈ 0.73
Vibrational Energies of DNO 3 Previous work: 9 in both IR (Tan et al) and microwave (Chou et al) 7 (Maki et al) and 8 (Tan et al) in IR 6 (Maki et al) and 9 (Tan et al) in IR, not perturbed 5 and 7 9 in IR, perturbed (Koubek et al) 9 99 cm -1 7 9
FASSST spectrometer (FAst Scan Submillimeter Spectroscopic Technique) Interference fringes Spectrum InSb detector 1 InSb detector 2 Ring cavity: L~15 m Mylar beam splitter 1 Mylar beam splitter 2 High voltage power supply Slow wave structure sweeper Aluminum cell: length 6 m; diameter 15 cm Trigger channel /Triangular waveform channel Signal channel BWO Magnet Lens Filament voltage power supply Length ~60 cm Stepper motor Reference channel Lens Stainless steel rails Path of microwave radiation Preamplifier Frequency roll-off preamplifier Reference gas cell Glass rings used to suppress reflections Data acquisition system Computer
Portion of the FASSST DNO 3 spectrum Intensity (arbitrary units) Frequency (GHz) Intensity (arbitrary units) HNO 3 Frequency (GHz) Intensity (arbitrary units) Strong R-branch, a-type transitions Ground and 9
9 = 1 Updated Analysis Chou et al., J. Mol. Spectrosc. 211, (2002) 405 transitions used rms = 44.4 kHz Tan et al., J. Mol. Spectrosc. 150, (1991) This workChouTan A (MHz) B (MHz) C (MHz) J (kHz) JK (kHz) K (kHz) J (kHz) K (kHz) This work: SPFIT and SPCAT used 3107 transitions used rms = 75 kHz J = 4-62; K a = 0-41; K c = 0-30 All sixth order centrifugal distortion terms fit, not shown
7 = 1 and 8 = 1 Spectra Intensity (arbitrary units) Frequency (GHz) Strong R-branch, a-type transitions 9 and 7 Intensity (arbitrary units) Frequency (GHz) 7 simulated in green Q-branch, a-type transitions Intensity (arbitrary units) Frequency (GHz) 9 and 8 Intensity (arbitrary units) Frequency (GHz) 8 simulated in orange Q-branch, J=49
7 = 1 and 8 = 1 Analysis Maki et al., J. Mol. Spectrosc. 157, (1993) Tan et al., J. Mol. Spectrosc. 149, (1991) Drouin et al., J. Mol. Spectrosc. 236, (2006) 7 8 ground This workMakiThis workTanDrouin A (MHz) B (MHz) C (MHz) J (kHz) JK (kHz) K (kHz) J (kHz) K (kHz) This work: SPFIT and SPCAT used Sixth order centrifugal distortion terms fit, not shown transitions used rms = 73 kHz J = 4-58; K a = 0-36; K c = transitions used rms = 75 kHz J = 5-52; K a = 0-31; K c = 0-30
6 = 1 and 9 = 2 Spectra Intensity (arbitrary units) Frequency (GHz) Intensity (arbitrary units) Frequency (GHz) Strong R-branch, a-type transitions 9, 6, and 2 9
6 = 1 and 9 = 2 Lowest J Perturbation: K a = 4 6 other Intensity (arbitrary units) Frequency (GHz) 26 7,19 – 26 7,20 and 26 8,19 – 26 6,20 Off by 3.77 MHz Predictions using no perturbation terms and transitions up to J= ,23 – 26 3,24 and 26 4,23 – 26 2,24 Off by 3.77 MHz 99 other Frequency (GHz) 6 K c = 20 and 2 9 K c = 24 energy levels perturbed starting at J=26
Example of Degenerate Energies Split by Perturbation Intensity (arbitrary units) Frequency (GHz) Predictions using no perturbation terms and transitions up to J=30 Frequency (GHz) Predictions using full analysis 31 16,15 – 31 16, ,15 – 31 15, ,15 – 31 15, ,15 – 31 16, ,10 – 33 22,11 99
6 = 1 and 9 = 2 Analysis J and K a of lower energy states of transitions used in fit 99 6
6 = 1 and 9 = 2 Strong Resonances Energy states of 6, K a +K c =J Energy states of 6, K a +K c =J+1 K a =4 K a =6 K a =4 K a =6 K a =8 K a =4
6 = 1 and 9 = 2 Analysis Tan et al., J. Mol. Spectrosc. 150, (1991) Maki et al., J. Mol. Spectrosc. 157, (1993) Drouin et al., J. Mol. Spectrosc. 236, (2006) This work: SPFIT and SPCAT 4475 transitions used rms = 105 kHz J = 5-50; K a = 0-38; K c = total sixth order centrifugal terms fit ground This workTanThis workMakiDrouin A (MHz) B (MHz) C (MHz) J (kHz) JK (kHz) K (kHz) J (kHz) K (kHz)
6 = 1 and 9 = 2 Analysis SPFIT code (fixed) cm -1 9 (fit) cm -1 D ab (MHz) D abJ (kHz) D abK (kHz) F J (MHz) F K (MHz) F JJ (kHz) F KK (kHz) F ± (MHz) F ±J (kHz) F ±K (kHz) F ±KK (Hz) C ab (MHz) C abK (kHz)
5 = 1 and 7 = 1, 9 = 1 Spectra Intensity (arbitrary units) Frequency (GHz) 17 0,17 – 16 0, ,17 – 16 1, ,13 – 14 2, ,13 – 14 3, ,15 – 15 1, ,15 – 15 2, ,13 – 14 2, ,13 – 14 3, ,11 – 13 3, ,11 – 13 4,10
5 = 1 and 7 = 1, 9 = 1 Preliminary Analysis Koubek et al., JQSRT 111, (2010) Drouin et al., J. Mol. Spectrosc. 236, (2006) This work: SPFIT and SPCAT used 2241 transitions used rms = 134 kHz J = 5-44; K a = 0-23; K c = ground This workKoubekThis workKoubekDrouin A (MHz) B (MHz) C (MHz) J (kHz) JK (kHz) * * K (kHz) J (kHz) K (kHz) * - held fixed to ground state value Higher order centrifugal distortion held fixed to ground state values
5 = 1 and 7 = 1, 9 = 1 Preliminary Analysis High K a (low K c ) transitions are predicted poorly, especially for 5 J and K a of lower energy states of transitions used in fit
5 = 1 and 7 = 1, 9 = 1 Preliminary Analysis Koubek et al., JQSRT 111, (2010) SPFIT codeThis workKoubek 5 (fixed, cm -1 ) (fit, cm -1 ) C a (MHz) C aJ (kHz) C aK (kHz) C b (MHz) C bJ (kHz) C bK (kHz) C bc (MHz) C ac (MHz) C ± (kHz)
Conclusion 9 updated with more transitions in fit 7 and 8 fit to experimental accuracy 6 and 9 fit with perturbed transitions to experimental accuracy 5 and 7 9 fit begun, Q branches fit relatively well, low K c R branches not 9 99 cm -1 7 9