Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen
Content * NN→NN * NN→d + -, 0 0 production at T p < 1.0 GeV: Roper resonance * Summary Theoretical and experimental situation 0 0, + + production at T p > 1.0 GeV: , (1600) isospin decomposition d + 0 production at T p = 1.1 GeV: , no ABC effect d 0 0 production at T p > 1.0 GeV: , ABC effect Motivation
WASA 4 detector
NN→NN : Valencia model L.Alvarez-Ruso et al., Nucl.Phys. A 633(1998) 519
Theory ↔ Experiment N * →N( ) I=0 N * → pp→pp + - pp→pp 0 0 N * →N( ) I=0 N * →
Theory ↔ Experiment pp→nn + + pp→pn + 0
0 0 production at T p < 1 GeV Valencia model A(tot) A(N * →N )+A(N * → ) T p =0.775 GeV T p =0.895 GeV At Roper mass M=1440 MeV
+ - production at T p = 0.8 GeV S. Abd El-Bary at el.,Eur.Phys.J. A 37(2008) 267 (COSY-TOF)
Decay branchings of Roper -decay R= (N * → →N )/ (N*→N →N ) N * mass [MeV] CELSIUS-WASA ** PDG Bonn-Gatchina * 0.28(3) 1.0(1) 4(2) 0.9(1) * Partial Wave Analysis γp→p 0 0 N→ N γp→p 0 - p→ n 0 0 A. Sarantsev et al., Phys. Lett. B 659(2008) 94 ** T.Skorodko et al., Eur. Phys. J. A 35(2008) 317
Isospin decomposition T. Skorodko et al., Phys. Lett. B 679(2009), 30
M 121 M 101 M 101 (N * ) Total cross section N* (Valencia) (Valencia) cosφ=1 T. Skorodko et al., Phys. Lett. B 679(2009), 30
pp→pp 0 0 T p = 1 GeVT p = 1.1 GeV Valencia calculations with readjusted N * → branch Valencia calculations with total Roper contribution reduced according to isospin decomposition
Cross section pp → nn CELSIUS/WASA excitation experiment
+ + I=2 (1232) (1600) very small amplitude according to Valencia model M =1500─1700 MeV threshold energy threshold energy =200─400 MeV can contribute at low energy Additional resonance with I=3/2
Conclusions I The main isoscalar production mechanism is the Roper excitation and its decay The branching ratio of the Roper decays N * →N /N * → at a pole mass of 1371 MeV is 4:1 This result is in favor of a monopole mode interpretation of the Roper excitation According to the isospin decomposition the energy dependence of the Roper total cross section behaves like a s-channel excitation Description of the + + production data both in total and differential cross sections requires additional contribution from a resonance with isospin 3/2. A good candidate is (1600)
From unbound to bound system: ABC effect
First step into the ABC Alexander Abashian, Norman E. Booth and Kenneth M. Crowe, Phys. Rev. Lett. 5, 258 (1960) π 2 π Phase Space C
ABC and ΔΔ models T.Risser, M.D. Shuster, Phys.Lett. B 43, 68(1973) F.Plouin et all, Nucl.Phys. A 302(1978) 413
pn→d 0 0 T p =1.03 GeV T p =1.36 GeV conventional calculation M.Bashkanov et al., Phys.Rev.Lett. 102(2009),
Total cross section M.Bashkanov et al., Proc. PANIC09, 239
pn→d 0 0 T p =1.03 GeV T p =1.36 GeV calculation with a s-channel resonance calculation without a s-channel resonance M.Bashkanov et al., Phys.Rev.Lett. 102(2009),
Crucial test of t-channel : pp→d + 0
pp→d + 0 at T p =1.1 GeV ( S=2.36 GeV) calculations for iso- scalar channel calculations for iso- vector channel F.Kren et al., Int.J.Mod.Phys. A 24(2009), 561
Total cross section (t-channel) F.Kren et al., nucl-ex/ J.Bystricry et al. F.Shimizy et al. CELSIUS-WASA
Conclusion II pn→d 0 0 - ABC effect: isoscalar s-channel resonance with M ABC 2M - 90 MeV ABC 50 MeV << 2 pp→d + 0 - no ABC effect: t-channel excitation
Thank you
conventional t-channel model ANKE ‘ABC’ data
Total xsection pn d 0 0 ( + 0 )= (I=1) ( + - )=0.5 (I=1)+2 (I=0) ( 0 0 )= (I=0)=0.2 (I=1) pp d + 0 t - channel
Qualitative description n p n Δ Δ d π π + Δ Δ d π π p
Theory ↔ Experiment pp→nn + + pp→pn + 0
Theory ↔ Experiment N * →N( ) I=0 N * → pp→pp + - pp→pp 0 0 N * →N( ) I=0 N * →
production at T p > 1.2 GeV pp→pp + T p =1.36 GeV pp→pp 0 T p =1.3 GeV Valencia calculations
0 0 production at T p > 1 GeV original Valencia calculations
pp → nn p MeV Valencia predictions + (1600)
Spin of ABC effect L=0
production → Roper ansatz T p =0.75 GeV Phys.Rev.Lett. 88, (2002) N * → Nσ N * → Δ N*N* ΔΔ NσNσ N All theoretical curves are normalized in area to the data
Event selection pp→pp → pp4 T p =0.775 GeV T p =1.1 GeV p 1 angle lab p 2 angle lab angle lab Central Detector
Particle identification (Central Detector) Momentum vs deposited energy in Plastic Barrel Energy deposited in CsI vs deposited energy in Plastic Barrel Momentum vs deposited energy in CsI
Particle identification → 2 s) reconstruction from detection proton identification: dE/E method 2 identification M p
Experimental evidence for a „narrow“ Roper p → 4.2 GeV (Saturne) J J/ → N N* and N N* (BES) M Roper = 1358 MeV Roper = 179 MeV M Roper = 1390 MeV Roper = 190 MeV
pp (WASA) pp → pn 1.3 GeV (WASA) Experimental evidence for a „narrow“ Roper M N* =1380 MeV, Γ=180 MeV
T p =0.895 GeV Interference between Roper and ΔΔ
M 121 in 4 times bigger cross section in pp 0 0 no contribution from
M 121 in 4 times bigger cross section in pp 0 0 no contribution from
cosφ +1
pp → pn 0 + prediction