W. Heil He/Xe Clock-Comparison Experiments PSI 12.09.2013 Limit on Lorentz and CPT Violation Using a Free Precession 3He/129Xe Co-magnetometer Background.

Slides:



Advertisements
Similar presentations
MR TRACKING METHODS Dr. Dan Gamliel, Dept. of Medical Physics,
Advertisements

Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Teppei Katori, Indiana University1 PRD74(2006) Global 3 parameter Lorentz Violation model for neutrino oscillation with MiniBooNE Teppei Katori,
Magnetic Resonance Imaging
Search for Lorentz invariance using a torsion-strip balance Clive Speake, Hasnain Panjwani and Ludovico Carbone. Rencontres de Moriond, La Thuile, 23 rd.
Test CPT with CMB Mingzhe Li Department of Physics, Nanjing University May 10, 2011 IHEP Beijing.
Fundamental Physics Research in Space International Workshop Washington DC May 2006 Probing Relativity using Space-Based Experiments Neil Russell.
Lorentz Violation and an Experimental Limit Ben Rybolt 12/10/2012.
The Quantum Mechanics of MRI Part 1: Basic concepts
ELEG 479 Lecture #9 Magnetic Resonance (MR) Imaging
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
Structure Determination by NMR CHY 431 Biological Chemistry Karl D. Bishop, Ph.D. Lecture 1 - Introduction to NMR Lecture 2 - 2D NMR, resonance assignments.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
A short presentation in the group by Prem Basnet 09/29/04.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Gravitational Tests of Lorentz Symmetry
Determination of Spin-Lattice Relaxation Time using 13C NMR
Search for CP violation in  decays R. Stroynowski SMU Representing CLEO Collaboration.
Week 11 © Pearson Education Ltd 2009 This document may have been altered from the original State that NMR spectroscopy involves interaction of materials.
1 Martin L. Perl SLAC National Accelerator Laboratory Holger Mueller Physics Department, University California-Berkeley Talk.
-Rhondale Tso -Dr. Quentin Bailey (Embry-Riddle Aeronautical University) NASA Space Grant Presentation.
Testing Relativity Theory With Neutrinos Brett Altschul University of South Carolina May 15, 2008.
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Tests of Lorentz and CPT violation with Neutrinos Teppei Katori Massachusetts Institute of Technology ICHEP2012, Melbourne, Australia, July 10, /10/12Teppei.
Gravitational Experiments and Lorentz Violation Jay D. Tasson V. Alan Kostelecký Indiana University TexPoint fonts used in EMF. Read the TexPoint manual.
Ch ; Lecture 26 – Quantum description of absorption.
Influence of Lorentz violation on the hydrogen spectrum Manoel M. Ferreira Jr (UFMA- Federal University of Maranhão - Brazil) Colaborators: Fernando M.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
A. Bondarevskaya Highly charged ion beam polarization and its application to the search for the parity nonconservation effects in ions
Atomic Sensors Research University of Wisconsin-Madison Thad Walker Anna Korver Dan Thrasher Mike Bulatowicz.
Study of T 1 relaxation time A proposal to test T 1 using a dilution fridge and SQUID NMA at Royal Hollow University,London.
Brian Plimley Physics 129 November Outline  What is the anomalous magnetic moment?  Why does it matter?  Measurements of a µ  : CERN.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Results and perspectives of the solar axion search with the CAST experiment Esther Ferrer Ribas IRFU/CEA-Saclay For the CAST Collaboration Rencontres de.
CPT and Lorentz violation as signatures for Planck-scale physics Discrete08.
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
“Planck 2009” conference Padova May 2009 Facing Dark Energy in SUGRA Collaboration with C. van de Bruck, A. Davis and J. Martin.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
New limit on axion-like interaction from storage of polarized 3 He A.K. Petukhov, D. Jullien, ILL 14-19Feb 2010 GRANIT.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Searches for Lorentz violation in 3 He/ 129 Xe clock comparison experiments Outline:  Features of frequency standards and clocks  3 He/ 129 Xe „spin“-clock.
Lorentz Invariance and CPT Violation Studies with MeV Blazars and GRBs 1.) Motivation and Status of Observations. 2.) Theoretical Framework (the Standard.
The Constancy of Constants. Dirac’s Large Number Hypothesis “A New Basis for Cosmology” Proceedings of the Royal Society of London, A165, 199 (1938) Ratio.
Testing general relativity experimentally: Equivalence Principle Tests
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
Search for axion like pseudo scalar spin interaction with a 3He-129Xe clock comparison experiment. Ulrich Schmidt.
Detection of cosmological axions experimental issues
qBOUNCE: a quantum bouncing ball gravity spectrometer
The bound-electron g factor in light ions
Felix Kahlhoefer Dark LHC 27 September 2014 Oxford
Neutron and electron electric dipole moments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Precision Tests of Fundamental Physics
CPT Symmetry and Lorentz Symmetry Tests
dark matter Properties stable non-relativistic non-baryonic
Spontaneous Lorentz-Symmetry Breaking in Gravity
Addition of Angular Momentum
1H and 13C NMR Spectroscopy in Organic Chemistry
Presentation transcript:

W. Heil He/Xe Clock-Comparison Experiments PSI Limit on Lorentz and CPT Violation Using a Free Precession 3He/129Xe Co-magnetometer Background fields (tensor fields) give preferred direction e.g. rest frame of CMB  talk of Ralf Lehnert Outline:  Experimental searches for Lorentz and CPT Violation  Features of 3 He/ 129 Xe „spin“-clock  Conclusion and outlook  Results from 3 He/ 129 Xe clock-comparison experiment

Michelson (1881,Potsdam) Michelson&Morley (1887,Cleveland) c(  ) = c photon sector: Traditional tests of Lorentz symmetry & special relativity 19 independent parameters Li + - ions C.Novotny et al., PR A 80 (2009) ESR at GSI relativistic Doppler effect c(v) = c

Test of constancy of c Kennedy,Thorndike 1932 Hils,Hall 1990 Braxmaier 2002 Wolf 2004 Herrmann 2009 Resonators Interferometers Year

Modified Dirac equation for a free spin ½ particle (w=e,p,n) standard DECPT violatingCPT preserving terms A. Kostelecky and C. Lane: Phys. Rev. D 60, (1999) Lorentz violating terms Standard-Model Extension Experimental access: Cs- fountain Torsion pendulum Antihydrogen spectroscopy Astrophysics Hg/Cs comparison UCN/Hg comparison He/Xe maser K/He co-magnetometer  clock comparison experiments Wolf et al., B.Heckel et al. PRD 78 (2008) matter sector - Neutron:

Topics: searches for CPT and Lorentz violations involving -birefringence and dispersion from cosmological sources -clock-comparison measurements -CMB polarization -collider experiments -electromagnetic resonant cavities -equivalence principle -gauge and Higgs particles -high-energy astrophysical observations -laboratory and gravimetric tests of gravity -matter interferometry -neutrino oscillations -oscillations and decays of K, B, D mesons -particle-antiparticle comparisons -space-based missions -spectroscopy of hydrogen and antihydrogen -spin-polarized matter * Theoretical studies of CPT and Lorentz biviolation involving -physical effects at the level of the SM, General Relativity, and beyond -origins and mechanisms for violations classical and quantum issues in field theory, particle physics, gravity, and strings Modern Tests of Lorentz violation

C Coupling of spin to background field: Zeeman LV  LAB cosmic microwave background v = 368 km/s  T dip  3.3 mK ~  T ~ GeV

F=4 F=3 133 Cs Micro-Wave f = 9.192… GHz Oscillator + Frequency divider + Counter State detection + frequency feedback accuracy (absolute scale):  f  3 µHz corresponding energy shift   1.5· GeV Atomic clock Spin clock Spin clock : reference transition at f  10 Hz with  f/f  accuracy (absolute scale):  f  1 pHz    4· GeV accuracy to trace tiny frequency shifts  6 orders of magnitude higher

3 He / 129 Xe clock comparison to get rid of magnetic field drifts 129 Xe (4,7 Hz) 3 He (13 Hz) B [nT] t [h] drift ~ 1pT/h   Hz/h B 0 ~ 1  T

(G. D. Cates, et al., Phys. Rev. A 37, 2877) (ms ) signal (a.u.) Standard NMR How to obtain long spin-coherence times in a macroscopic spin sample ? BMSR 2, PTB Berlin J. Bork, et al., Proc. Biomag 2000, 970 (2000). Motional narrowing : LT c - SQUID gradiometer noise: 10 cm (residual field : ~ 1 nT )

Data evaluation and results Fitfunction Individual runs (~24 h): Earth rotation Ramsey-Bloch-Siegert shift (  talk of U. Schmidt)

ASD plot of phase residuals Measurement sensitivity: 4 gradiometer, 7 runs Data evaluation and results

Global Fitfunction: Fitfunction Individual runs: (95% C.L.) Year 2009 data run: ~ 12 h  s = 2  /T SD = 2  /(23 h :56 m :4.091 s ).

 cos mrad  sin mrad To demonstrate the strong dependence of the correlated error on  s, corresponding fit results are shown for multiples of  s :  ’ s = g  s March 2009 subrun (shifted by 0.04 rad) 2012 data

Data evaluation and results Global Fitfunction: Fitfunction individual runs: Preliminary fit result: SME Kostelecky et al., PR D 60, (1999) Year 2012 data run: ~ 24 h

Results Kostelecky, Russell arXiv: v6 (2013) neutron Lorentz violating effect for each gas is that of a single valence neutron (Schmidt model) Tightest constrains on SME parameters on neutron sector:

Conclusion  3 He, 129 Xe spin clock based on free spin precession  long spin coherence times  ultra-sensitive probe for non-magnetic spin interactions of type:  Sensitivity (Cramer Rao Lower Bound) : spin coupling to a Lorentz- and CPT-violating background field  result (2012 data, preliminary ): Outlook  present sensitivity limited by correlated error:  increase : matter of research !  gain of measurement sensitivity ~ 100 : essentially by increasing test of SME parameters (energy range) : GeV

W. Heil He/Xe Clock-Comparison Experiments PSI Thank you for your attention Institut für Physik, Universität Mainz: C. Gemmel, W. Heil, S. Karpuk, K. Lenz Y. Sobolev, K. Tullney Physikalisch-Technische-Bundesanstalt, Berlin: M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg: F. Allmendinger, U. Schmidt 3 He/ 129 Xe Clock-Comparison Experiments

backups

Change of the absolute field gradient during rotation and its effect on T 2 *

20 Limit: 60s only for T < 60s  reaches CRLB Test of CRLB via Allan Standard Deviation (ASD) Non-gaussian noise: magnetic field drifts intrinsic noise … 2 ii+1  He/Xe Clock-Comparison Experiments CPT’

SM: relativistic quantum field theory electromagnetic force weak force strong force gravitation General relativity is a classical theory, i.e., non-quantum Standard Model (SM) of particle physics Unification theories: string theory, loop quantum gravity,.. Planck scale: energy scale where gravity meets quantum physics M p ~ GeV Courtesy of C. Lämmerzahl A closer look…

Kostelecký, Perry, Pot, Samuel ’89; ’90; ’91; ’95; '00 Spontaneous Lorentz symmetry breaking in string theory e.g. Lorentz vector field makes non zero vacuum expectation value low-energy world Planck scale  GeV Background fields (tensor fields) give preferred direction e.g. rest frame of CMB D. Colladay and V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys.Rev. D 58, (1998)  talk of Ralf Lehnert

Kostelecky et al., Phys. Rev. D 60, (1999) 3 He: µ = µ K 129 Xe: µ = µ K n : µ = µ K Schmidt-Model free neutron: (X,Y,Z) non-rotating frame with Z along Earth‘s rotation axis Lab-frame with quantization axis z In terms of frequency: (95% C.L.) PTB Berlin:  = 52, north  = 28 0 (north-south) PRD 82 (2010)

3 He free spin-precession signal R d SQUID parameters: p He = 1-3 mbar ; P = 10-50% R =2.9 cm; d = 6cm   B = pT Signal: Note: At present, the Xe spin coherence time T 2 * is limited to due to wall relaxation T 2 *  8 h system noise inside BMSR-2 ~ 2 fT/  Hz

He/Xe Clock-Comparison Experiments CPT’ Frequency estimation The Cramer-Rao Lower Bound (CRLB) sets the lower limit on the variance example: SNR = 10000:1, f BW = 1 Hz, T= 1 day  Correction for exponential damping of signal amplitude ( T 2 * - relaxation ) T

BMSR 2, PTB Berlin 6 cm 3 He (4.5 mbar ) J. Bork, et al., Proc. Biomag 2000, 970 (2000). The 7-layered magnetically shielded room (residual field < 2 nT) LT c - SQUID magnetic guiding field  0.4  T (Helmholtz-coils)

nm MEOP Polarizer Mainz: 3 He SEOP Polarizer PTB: 129 Xe He Xe N2N2 He/Xe Clock-Comparison Experiments CPT’

detector Clock based on nuclear spin precession „ spin-clock“ (ms ) signal (a.u.) (G. D. Cates, et al., Phys. Rev. A 37, 2877)

29 Nuclear spin properties: “First order” nuclear structure: Both nuclei have one unpaired neutron, which accounts for the nuclear spin. All other nucleons are paired with antiparallel spins  3 He and 129 Xe polarization Spin exchange with optically pumped Rb-vapour ( SEOP ) 3 He polarization Optical pumping of metastable 3 He * -atoms ( MEOP ) He/Xe Clock-Comparison Experiments CPT’

30 Fitting subset subset left:  2 /dof = 1.03 He/Xe Clock-Comparison Experiments CPT’

31 Subtraction of deterministic phase shifts He/Xe Clock-Comparison Experiments CPT’ a lin : earth rotation and chemical shift

32 Subtraction of deterministic phase shifts +  (t) spin-coupling a : generalized Ramsey-Bloch-Siegert-Shift  Magnetisation (self shift) b : Bloch-Siegert-Shift  Magnetisation 2 of other spin species He/Xe Clock-Comparison Experiments CPT’

33 The detection of the free precession of co-located 3 He/ 129 Xe sample spins can be used as ultra-sensitive probe for non-magnetic spin interactions of type:  Search for spin-dependent short-range interactions (axion like particles)  Search for a Lorentz violating sidereal modulation of the Larmor frequency  Search for EDM of Xenon  … Observable: He/Xe Clock-Comparison Experiments CPT’

34 Status of the 129 Xe-EDM experiment (1)Plastic housing, filled with SF 6 ; Prototype exists (2)Glass cell with silicon lids; Prototype exists (3)High voltage electrodes with cabling; Design phase, High voltage supply with leakage current detection is under construction (4)Overall design/calculations of electric field distribution, leakage current estimates are almost finished (5) Cryostat made of carbon fibre ordered; special low temperature SQUID Gradiometers ordered He/Xe Clock-Comparison Experiments CPT’

Repetition of short measurements of free precession T m : measurement time Measurement of uninterrupted precession Gain in sensitivity:

Measurement sensitivity: 129 Xe electric dipole moment EoEo  E   E  BoBo E E Then we will reach … after 100 days of data taking: from 2010 run:  = 19 1 day assume : E=2 kV/cm Observable: weighted frequency difference sensitivity limit: Rosenberry and Chupp, PRL 86,22 (2001) ecm