Infrastructure for Neutrino astroparticle physics and Marine science KM3NeT.

Slides:



Advertisements
Similar presentations
CDR Feb 2006Mar 2008Dec 2009 Mar Design Study Preparatory Phase TDR tendering construction data taking governance legal entity pre-production.
Advertisements

R.Shanidze, B. Herold, Th. Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece Study of data filtering algorithms.
Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
The Multi-PMT Optical Module P.Kooijman, University of Amsterdam University of Utrecht Nikhef.
Kay Graf Physics Institute 1 University of Erlangen ARENA 2006 University of Northumbria June 28 – 30, 2006 Integration of Acoustic Neutrino Detection.
Electronic department A photonic network for data acquisition systems for deep-sea neutrino telescopes Presentation on behalf of the KM3NeT consortium.
WP3 meeting Pylos of 21 Jelle Hogenbirk et al. electronic department The sphere containing multi PMT’s: - HV and discriminator board for each.
Kay Graf Physics Institute University of Erlangen TeV Particle Astrophysics II Madison, WI, USA August 28 – 31, 2006 Towards Acoustic Detection of UHE.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
Stefano russo Universita’ di Napoli Federico II & INFN Km3Net meeting Pylos 16–19/4/2007 The NEMO DAQ electronics: Actual characteristics and new features.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
WP2 meeting, Oct 2006, CPPM Claudine Colnard - NIKHEF Claudine Colnard, Ronald Bruijn, Eleonora Presani, Siemen Meester, Paul Kooijman (presented by Maarten.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
A sensor architecture for neutrino telescopes on behalf of the KM3NeT consortium Els de Wolf Thank you, Claudio!
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
Disk WP-4 “Information Technology” J. Hogenbirk/M. de Jong  Introduction (‘Antares biased’)  Design considerations  Recent developments  Summary.
P.F.Timmer Nikhef Amsterdam Electronics- Technology Very low power, High Voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope.
M. Circella and the NEMO Coll., Timing Calibration in NEMO VLV T workshop, Amsterdam, October 2003 Timing calibration in NEMO M. Circella Istituto Nazionale.
Digital & Analog electronics for an autonomous, deep-sea Gamma Ray Burst Neutrino prototype detector K. Manolopoulos, A. Belias, E. Kappos, C. Markou DEMOKRITOS.
Acoustic Calibration for the KM3NeT Pre-Production Module Alexander Enzenhöfer on behalf of the KM3NeT consortium VLV T 2011 Erlangen, –
Antares Slow Control Status 2007 International Conference on Accelerator and Large Experimental Physics Control Systems - Knoxville, Tennessee - October.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
Disk Towards a conceptual design M. de Jong  Introduction  Design considerations  Design concepts  Summary.
VLV T – Workshop 2003 Read Out and Data Transmission Working Group Synchronous Data Transmission Protocol for NEMO experiment.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
S.Anvar, V.Gautard, H.Le Provost, F.Louis, K.Menager, Y.Moudden, B.Vallage, E.Zonca, on behalf of the KM3NeT consortium 1 IRFU/SEDI-CEA Saclay F
F. Simeone – INFN, Sez. Roma1 RICAP07 Conference, Rome June 2007 Data taking system for NEMO experiment RICAP07.
Antares status and plans  Reminder  Project status  Plans M. de Jong.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Electronics Department Amsterdam 5-July-2010 Sander Mos 1 Status and progress of NIK* Logic WPFL - 5 July 2010 Amsterdam * Network Interface Kit.
KM3NeT M. de Jong Staff overleg 12 Mei  M. de Jong, P. Kooijman, G. v.d. Steenhoven, E. de Wolf (R. v. Dantzig, J. Engelen, P. de Witt Huberts,
M. Circella – ANTARES connectionINFN Comm. II, 5/6/2008 The ANTARES Connection Marco Circella --- INFN Bari 1.
Firmware and Software for the PPM DU S. Anvar, H. Le Provost, Y.Moudden, F. Louis, E.Zonca – CEA Saclay IRFU – Amsterdam/NIKHEF, 2011 March 30.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
The Neutrino Telescope of the KM3NeT Deep-Sea Research Infrastructure Robert Lahmann for the KM3NeT Consortium Erlangen Centre for Astroparticle Physics.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
IRFU The ANTARES Data Acquisition System S. Anvar, F. Druillole, H. Le Provost, F. Louis, B. Vallage (CEA) ACTAR Workshop, 2008 June 10.
23 April, 2008Gabriele Giovanetti – INFN - LNS1 New electronics architecture in NEMO – phase 2. Gabriele Giovanetti – INFN – LNS NEMO Phase 1: 4 floor.
Status of the NEMO tower validation Integration Tests Improvements Deployment program M.Anghinolfi- km3-day meeting )
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
Multi-PMT DOM P.Kooijman University of Amsterdam-GRAPPA Presentation for SSC.
KM3NeT WP3 meeting Genova Jelle Hogenbirk et al. electronic department 1 of 36 Read-out and transmission technologies for optical modules 
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Deep-sea neutrino telescopes
Using VDSL2 over Copper in the Vertical String
DAQ read out system Status Report
Write-up and Definitions for Cost Model
Front-end Electronic for a neutrino telescope : a new ASIC SCOTT
Status of the Baikal-GVD experiment
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Els de Wolf, Nikhef/UvA KM3NeT WP345-meeting 23 February 2009
T. Eberl for Robert Lahmann and the Erlangen acoustic group
White Rabbit in KM3NeT Mieke Bouwhuis NIKHEF 9th White Rabbit Workshop
Multi PMT P.Kooijman Just 1.
Els de Wolf 20 February 2012, Catania
Baikal-GVD (technical report)
A First Look J. Pilcher 12-Mar-2004
Point-to-point connection between each DOM and the shore station
Commodity Flash ADC-FPGA Based Electronics for an
Presentation transcript:

Infrastructure for Neutrino astroparticle physics and Marine science KM3NeT

Start 1st February 2006 Autumn 2007: Conceptual Design Report February 2009: Technical Design Report

NIKHEF activities Simulation : new program Sirene Optical Module: multi PMT, cable design Read out and DAQ: “Fiber-to-the-home” Deployment: container concept Conditions price/volume: ~2x cheaper than Antares production per month, per site: 2 lines with 25 OMs each

Claudine Colnard, Ronald Bruijn, Paul Kooijman, Eleonora Presani, Siemen Meester

Flexibility Modularised: Topology of optical modules in telescope Seawater parameters Track generation PMT topology inside optical module PMT parameters (QE, Orientation, angular acceptance)

Empty core telescope  Paul Kooijman, Maarten de Jong 2 photon hit probability > 90% eff. 1 photon hit probability > 50% eff. (~75 m) ~400 m ~700 m Muon range x area = volume

Multi PMT optical module HE neutrinos: –Horizontal view Background: single photons Local coincidences: clusters view same direction -> Two photon purity Esso Flykt (Photonis), Paul Kooijman, Maarten de Jong

Photon detection  Large PMT –Slow –Analogue –Q -integrator –ADC  Small PMT –Fast –Digital –Single photon counting –Time-over-threshold Paul Kooijman, Maarten de Jong

Segmentation Background: –Random time –Random side Signal: –Same time –Same side Paul Kooijman, Maarten de Jong

cos  of photon Two hits in adjacent PMTs 4 x 10” 36 x 3.5” 3 x 10” (Antares)

PMT topology in OM Herman Boer Rookhuizen 19 PMTs (3”) in a half sphere (17”) including tube electronics on foot

Optical module Hans Kok 20 x 3” PMTs in foam suspension

Optical module Hans Kok Room for electronics in centre

“Contact lens” Hans Kok RTV silicon GE615 Connection PMT with glass

Cooling Up to 5W using only convection – above that harder and need contact with the glass Hans Kok Central electronics

HV supply On foot of the PMT Optimizing HV and power behaviour At present: 15mW HV + 15 mW for amp + 15mW comparator New PCB design Preparing long term behaviour studies LT comp - + K D1 D2 D8 D9 A 3V3 Q Q\ in out Paul Timmer, Lex Kruijer

OM0 OM1 OM2 Compass_MB ARS_MB OM0 ARS_MB OM1 ARS_MB OM2 ARS_MB LB)* DAQ/SC INSTR CLOCK MLCM_DWDM SWITCH BIDICON Preamp* RX_DSP* RX_CPU* MLCM specific at the sea bottom OM_0 OM_1 OM_2 Line equipment, infrastructure etc. DWDM shore stations CLOCK gen. GbE switches computer farm commercial Instrumentation LCM specific Acoustic Titanium cylinder ANTARES read out/DAQ architecture Jelle Hogenbirk

Time stamping  Off-shore TDC –Distributed clock system Master clock Network Many slave clocks –A-synchronous readout  On-shore TDC –Local clock system Master clock ‘smart TDC’ –Synchronous readout Maarten de Jong

DAQ vertical cabling options All fibers Event time stamp on shore Very high speed data communication Minimal electronics off shore Real time data communication Dead-timeless All Cu Event time stamp off shore at each floor Moderate to high speed data communication Complicated electronics off shore Store and forward data communication Based on fiber-to-home (FTTx) developments in telecom

2.. n 1.. n General diagram photonic-Cu mix <100Mbps 10kV/400V Ref: Catania 400/48V 3Gbps LINE 1 apd ADM 1 logic 30:1 mux vdsl2 48V/3.5 logic x c PMT c OM 1 Vertical Cable VDSL2 Main cable GPS rec. Shore station laser 1..n 1 n Clock apd clck-sc-cal. data GbE Copper Logics CPUs Power apd 1:n 1.. n branch equivalent 10kV JB branch Anchors LINE 2..n n = number of lines on 10kV branch (<60) Branch cable: n x in one fibre, 1 x 10kV power line m branches Main cable: m fibres, 1 x 10kV power line m = number of branches vdsl2 OM Henk Peek, Peter Jansweijer, Eric Heine

General diagram “all optical” GPS rec x Shore station c PMT Optical module c laser 1..n 2 n+1 1> n+ n+1 data ~30 x Clock apd clck-sc-cal. data GbE Copper Logics CPUs Power ~16 x Power apd Clock cal ½ns serdes Production model Independent manufacturing Single Fibre per line Jelle Hogenbirk, Sander Mos, Mar vd Hoek, TU/e

Electronic-photonic front end From PMT’s I 0 I 1 I x identifier DDDDDDDDDDD All = one optical pulse serialized output after optical trigger electric output to optical modulator 2R or 3R ? modulator unit CW + clk pulse ,6 nsec 3,2 nsec I 0 I 1 I x Puls det & gain flattening ~ 7ns 16 PMT’s and 4 identifiers => 20 data bits. Optical trigger repetition rate: 1,6 nsec 3,2 nsec psec sample pulse width. If “D” delay 100 psec then the system adapts to 10Gbit/sec optical transmission technology. e.g. every 2 nsec Jelle Hogenbirk, Sander Mos, Mar vd Hoek, TU/e

Mar vd Hoek

Herman Boer Rookhuizen Thoughts on deployment Container could –House reel cable so it can be connected to test. –House light-diodes for testing, before/after deployment. –Made of fiberglass? –Fit in a standard shipping container.

Test basin EMIN experiment hall accelerator building Water basin 8.5m x 10mØ Features: OM characterisation LINE tests Edward Berbee

KM3NeT and ESFRI FP7 proposal for Preparatory Phase: –Establishment of legal entity, governance, commitment of ministries and/or funding agencies –Site selection –(some) prototyping –Max 7 MEuro –Deadline proposal May 2007 –Start early 2008

Physicists: Ronald Bruijn, Claudine Colnard, Maarten de Jong, Paul Kooijman, Siemen Meester, Eleonora Presani, Gerard vd Steenhoven, Els de Wolf Engineers: Herman Boer Rookhuizen, Edward Berbee, Eric Heine, Mar vd Hoek, Jelle Hogenbirk, Peter Jansweijer, Rob Klopping, Hans Kok, Lex Kruijer, Sander Mos, Henk Peek, Paul Timmer

Production model x ANTARES -> ~350 sensor lines ~35 calibration lines Total ~ 400 lines 25 stories -> ~6000 OMs 3 year: ~100 lines/yr -> ~2000 OM/yr 5 sites: ~20 lines/site/yr -> ~400 OM/site/yr Per month/per site: ~2 lines, 30 OMs -> Design efficient production model

Custom KM3Net VDSL2 Channel VTU-O (VDSL-2 Transceiver Unit At ONU (Optical Network Unit)) AN (Acces Node) LPF MHz Broadband Network BPF Copper Pair VTU-R (VDSL-2 Transceiver Unit- Remote side) NT (Network Termination) Reference Oscillator LPF MHz BPF DC Power Timing Reference Rate/Reach performance 100 Mbit/s over 500 meters Henk Peek, Peter Jansweijler, Eric Heine

1 2 Two with overlap Shower? Late hit? Single photon pulse : Typ 5 nsec (Min 2 nsec and 7 nsec post ampl.) 1 nsec PMT number time 7 nsec 15 Random or first? PMT outputs of a typical event in a OM ~ 7ns Time over threshold single photon pulse (3.5 “ PMT)