Misura del grado di disordine e dell’indice di frattalità mediante tecniche NMR di diffusione anomala Silvia Capuani*, Marco Palombo°, Alessandra Caporale*,

Slides:



Advertisements
Similar presentations
Magnetic Resonance Imaging
Advertisements

Six-week project Lauren Villemaire MBP 3970Z Department of Medical Biophysics University of Western Ontario.
S. Della Torre 1,2, P. Bobik 5, G. Boella 1,3, M.J. Boschini 1,4, C. Consolandi 1, M. Gervasi 1,3, D. Grandi 1, K. Kudela 5, F. Noventa 1,3, S. Pensotti.
Influence of pore-scale disorder on viscous fingering during drainage. Renaud Toussaint, Jean Schmittbuhl Institute of Globe Physics Strasbourg (IPGS/
TNO orbit computation: analysing the observed population Jenni Virtanen Observatory, University of Helsinki Workshop on Transneptunian objects - Dynamical.
Diffusion Tensor MRI And Fiber Tacking Presented By: Eng. Inas Yassine.
Inferring Axon Diameter Sizes using Monte Carlo Simulations of Magnetic Resonance Oscillating Gradient Spin Echo Sequences ME Mercredi 1, TJ Vincent 2,3,
Fractional diffusion models of anomalous transport:theory and applications D. del-Castillo-Negrete Oak Ridge National Laboratory USA Anomalous Transport:Experimental.
C.L. Bray 1, S. Iannopollo 1, G. Ferrante 3, N.C. Schaller 2, D.Y. Lee 1, J.P. Hornak 1 1 Magnetic Resonance Laboratory and 2 Computer Science Department,
Topologically biased random walks with application for community finding Vinko Zlatić Dep. Of Physics, “Sapienza”, Roma, Italia Theoretical Physics Division,
Polymers PART.2 Soft Condensed Matter Physics Dept. Phys., Tunghai Univ. C. T. Shih.
Non-diffusive transport in pressure driven plasma turbulence D. del-Castillo-Negrete B. A. Carreras V. Lynch Oak Ridge National Laboratory USA 20th IAEA.
Interstellar Turbulence and hierarchical structuring Nicolas Décamp (Univ. della Calabria) Jacques Le Bourlot (Obs. de Paris)
Mathématiques de la diffusion restreinte dans des milieux poreux Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS – Ecole Polytechnique,
Gabriel Cwilich Yeshiva University NeMeSyS Symposium 10/26/2008 Luis S. Froufe Perez Ecole Centrale, Paris Juan Jose Saenz Univ. Autonoma, Madrid Antonio.
A general pore-to-reservoir transport simulator Matthew E. Rhodes and Martin J. Blunt Petroleum Engineering and Rock Mechanics Group Department of Earth.
A general pore-to-reservoir transport simulator Matthew E. Rhodes and Martin J. Blunt Petroleum Engineering and Rock Mechanics Group Department of Earth.
Imaging Sequences part II
1 DIELECTRIC RELAXATION IN POROUS MATERIALS Yuri Feldman Tutorial lecture 5 in Kazan Federal University.
1 Fractional dynamics in underground contaminant transport: introduction and applications Andrea Zoia Current affiliation: CEA/Saclay DEN/DM2S/SFME/LSET.
A subordination approach to modelling of subdiffusion in space-time-dependent force fields Aleksander Weron Marcin Magdziarz Hugo Steinhaus Center Wrocław.
Contact line dynamics of a liquid meniscus advancing in a microchannel with chemical heterogeneities C. Wylock1, M. Pradas2, B. Haut1, P. Colinet1 and.
Formulation of the Problem of Upscaling of Solute Transport in Highly Heterogeneous Formations A. FIORI 1, I. JANKOVIC 2, G. DAGAN 3 1Dept. of Civil Engineering,
Glass Phenomenology from the connection to spin glasses: review and ideas Z.Nussinov Washington University.
Materials Process Design and Control Laboratory MULTISCALE MODELING OF ALLOY SOLIDIFICATION LIJIAN TAN NICHOLAS ZABARAS Date: 24 July 2007 Sibley School.
Laboratoire Environnement, Géomécanique & Ouvrages Comparison of Theory and Experiment for Solute Transport in Bimodal Heterogeneous Porous Medium Fabrice.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
Low–field NMR (or MRI) Images of Laser polarized Noble Gas.
MRI Physics Dr Mohamed El Safwany, MD.. MRI Magnetic Resonance Imaging Magnetic Resonance Imaging.
Christian E. Mejia, Christoph F. Weise, Steve Greenbaum, Hunter College Dept. of Physics and Astronomy Shane E. Harton, Columbia University Dept. of Chemical.
Chapter 15 – CTRW Continuous Time Random Walks. Random Walks So far we have been looking at random walks with the following Langevin equation  is a.
METHODS OF MEASURING SUBDIFFUSION PARAMETERS Tadeusz Kosztołowicz Institute of Physics, Świętokrzyska Academy, Kielce, Poland Anomalous Transport Bad Honnef,
SUBDIFFUSION OF BEAMS THROUGH INTERPLANETARY AND INTERSTELLAR MEDIA Aleksander Stanislavsky Institute of Radio Astronomy, 4 Chervonopraporna St., Kharkov.
Bruno Maraviglia, Silvia Capuani, Girolamo Garreffa, Federico Giove, Tommaso Gili, Antonino M. Cassarà, Marco Carnì, Giovanni Giulietti, Marta Moraschi,
Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process.
FLOW THROUGH GRANULAR BEDS AND PACKED COLUMN
Neutron EDM Monte Carlo Simulation Uniform E+B fields Riccardo Schmid B. Plaster, B. Filippone Chicago June 6, 2007 EDM Collaboration Meeting.
Fractional Feynman-Kac Equation for non-Brownian Functionals IntroductionResults Applications See also: L. Turgeman, S. Carmi, and E. Barkai, Phys. Rev.
Andrea Bertozzi University of California Los Angeles Thanks to contributions from Laura Smith, Rachel Danson, George Tita, Jeff Brantingham.
Measuring Water Diffusion In Biological Systems Using Nuclear Magnetic Resonance Karl Helmer HST 583, 2006
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
Silvia Capuani*, Giulia Di Pietro*, Guglielmo Manenti°, Umberto Tarantino^ * CNR ISC, Physics Department Sapienza University, Rome, Italy °Department of.
101° CONGRESSO NAZIONALE DELLA SOCIETA ITALIANA DI FISICA Roma, settembre 2015 Spatial Rogue Waves in Photorefractive Ferroelectrics Fabrizio Di.
Anomalous diffusion stretched exponential  -imaging model provides new information on spinal cord microstructure Alessandra Caporale 1,2, M. Palombo 2,3,
Imaging of Small Vessels in the Brain using MRI
Melanie Martin University of Winnipeg
Microstructure Imaging Sequence Simulation Toolbox
Equation of Continuity
Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system
Hasan Nourdeen Martin Blunt 10 Jan 2017
Pianificare la città frattale
Predicting NMR Response in Micro-CT images and Networks
MRI Physics in a Nutshell Christian Schwarzbauer
Biophysical Tools '04 - NMR part II
Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée
Continuous Time Random Walk Model
Jean-Raynald de Dreuzy Philippe Davy Micas UMR Géosciences Rennes
Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers: Monte Carlo Simulation Approach Using a Two-State Model  István P. Sugár, Ekaterina.
MRI Pulse Sequences: IR, EPI, PC, 2D and 3D
Gradient echo. Gradient echo. An excitatory radiofrequency (RF) pulse causes transverse magnetisation and initiation of a free induction decay signal.
Anisotropy Induced by Macroscopic Boundaries: Surface-Normal Mapping using Diffusion-Weighted Imaging  Evren Özarslan, Uri Nevo, Peter J. Basser  Biophysical.
Department of Computer Science University of York
Berrilli F., Del Moro D., Giordano S., Consolini G., Kosovichev, A.
Marco Leonetti1, Salman Karbasi2, Arash Mafi2, Claudio Conti3
Ariel Lubelski, Joseph Klafter  Biophysical Journal 
Magnetic Resonance Imaging
Multiscale modeling of hydrogen isotope transport in porous graphite
373th Wilhelm und Else Heraeus Seminar
The echo time (TE) The echo time (TE) refers to the time between the application of the radiofrequency excitation pulse and the peak of the signal induced.
Pulse sequence diagram for a diffusion-weighted acquisition shows that 2 diffusion-sensitizing gradients (dark gray) are added to a spin-echo sequence,
Presentation transcript:

Misura del grado di disordine e dell’indice di frattalità mediante tecniche NMR di diffusione anomala Silvia Capuani*, Marco Palombo°, Alessandra Caporale*, Andrea Gabrielli* *CNR-IPCF UOS Roma Physics Dpt. “Sapienza” Univ, Rome, Italy °MIRcen, I 2 BM, Commissariat à l'Énergie Atomique, CNRS, Fontaney-aux-Roses, Paris, France 101° Congresso della SIF. Roma, settembre 2015

In disordered and complex systems and highly heterogeneous media, diffusion is often non-Gaussian or anomalous And many other examples... Non-ordinary diffusion: anomalous diffusion

(l) = pdf of jumps lenght l w(t) = pdf of waiting time t, between two consecutive jumps If, <  If =  Gaussian diffusion, ordinary diffusion equation:  t Anomalous sub-diffusion, time fractional derivative equation:  t , with 0<  <1 Anomalous super-diffusion, space fractional derivative equation:  t 1/ , with 0<  <1 If = , <  Metzler R., Klafter J., Phys. Rep. 339 (2000) CTRW approach

Why and How to measure diffusion by NMR By using radio-frequency and magnetic field gradient pulses. Pulse Gradient Spin Echo (PGSE) sequence. The PGSE signal is proportional to the characteristic function of the diffusion propagator in time   :  varying PGSE

Biophysical interpretation of  and  parameters Length scale(s) of magnetic heterogeneity Disorder Degree Anomalous diffusion in 3D porous media: experiments Palombo M., Gabrielli A., De Santis S., Cametti C., Ruocco G., Capuani S., J. Chem. Phys. 135 (2011)

Steinhardt P.J., Nelson D.R., Ronchetti M., Phys. Rev. B 28 (1983) Analysis of sub-diffusion processes and disorder degree in crowded media Anomalous diffusion in 3D porous media Q = Q 6 system /Q 6 fcc Bond-orientational order parameters Sphere packing Φ = 0.74 Q = 1 Φ = Q = 0.65 Φ = Q = 0.70 Spatial distribution of obstacles

Φ = 0.74Φ = 0.68Φ = 0.64 Occupied volume Free volume Q =1 <1 fcc random config. Anomalous diffusion in 3D porous media: simulations Palombo M., Gabrielli A., Servedio V.D.P., Ruocco G., Capuani S., Scientific Report, 3 (2013)

Anomalous diffusion in 3D porous media: NMR experiments comparison of Monte Carlo simulation results to dNMR experimental data From geometrical structure characterization to anomalous diffusion properties: Palombo M., Gabrielli A., Servedio V.D.P., Ruocco G., Capuani S., Scientific Report, 3 (2013)

Highly porous polymeric matrices with randomly oriented interconnected pores obtained from a solution of polyvinyl alcohol and etyltrimethylammonium bromide (PVA scaffolds) void size distribution:  m interconnection size distribution: 4-50  m the three scaffolds differ in the roughness of the walls of their voids and interconnections Application to multiscale porous materials Barbetta A. et al., Soft Matter,6 (2010) PVA1PVA2PVA3 PVA3 PVA2 PVA1

Gaussian approach Imaging: PGSTE sequence TR = (  ) ms TE = 15 ms;  = 2 ms g = 74 mT/m  = (20  520) ms PVA 3 PVA 1 PVA 2 PVA 3 PVA 1 PVA 2 3 S A = 45 m 2 /g S A = 68 m 2 /g S A = 106 m 2 /g Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation

Imaging: PGSTE sequence TR = (  ) ms TE = 15 ms;  = 2 ms g = 74 mT/m  = (20  520) ms PVA 3 PVA 1 PVA 2 PVA 3 PVA 1 PVA 2 3 S A = 45 m 2 /g S A = 68 m 2 /g S A = 106 m 2 /g Anomalous diffusion approach Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation

Application to multiscale porous materials Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation M.J. Saxton Biophys, J. 66 (1994) X=S/  fractal dimension

Conclusions  ( which quantifies subdiffusion processes) can be measured by non invasive and non destructives diffusion NMR techniques. , is affected by both the density (Φ) and the spatial distribution (Q) of obstacles:  =  (Q, Φ)  value quantifies global structural complexity. It enables a classification of different kinds of disorder and it allows to monitor structural transitions. Our results indicate that , which quantifies the crowding effect on diffusion process, can be used to measure the fractal dimension of the random path (d w ):  = 2/d w  MAPS dramatically increase NMR sensitivity to micro and submicrostructures The present work suggests that  may be used to quantify unresolved effects due to heterogeneities and disorder in soft materials and living tissues.

Thank you for your attention attention NMR Laboratory, CNR-ISC Physics Dpt. Sapienza University of Rome, Italy