Current Opinion in Chemical Biology 2006, 10:141-146 Bioethanol Kevin A Gray, Lishan Zhao and Mark Emptage 강 현 우강 현 우 창해 연구소 수습 사원 Current Opinion in Chemical.

Slides:



Advertisements
Similar presentations
1 9/21/2010 Iman Rusmana Department of Biology Bogor Agricultural University What is Ethanol? Ethanol Production From Biomass Ethanol Production From Grains.
Advertisements

R. Shanthini 06 Feb 2010 Ethanol as an alternative source of energy Bioethanol is produced from plants that harness the power of the sun to convert water.
Powering the Future: Biofuels. Activity: Yeast fermentation Describe the production of ethanol from renewable sources Describe the process of fermentation.
Improve Xylose Utilization 1.The significance of improving xylose utilization: The commercialization of second-generation bioethanol has not been realized.
Enzymatic Hydrolysis of Poplar Pretreated by Ammonia Fiber Explosion James F. Heidenreich, Tamika Bradshaw, Bruce E. Dale and Venkatesh Balan BCRL, Department.
Rosemary Dobson University of Stellenbosch
DEPARTMENT OF ENZYMOLOGY OF CARBOHYDRATES HEAD: Peter Biely CO-WORKERS: Mária Vršanská, Mária Cziszárová, Vladimír Puchart, Katarína Kolenová, Silvia Špániková,
Designer organisms: From cellulosics to ethanol production
Screening of Geobacillus Strains for Sugar Metabolism Justin Cullity Adviser: Dr. Kang Wu Chemical Engineering University of New Hampshire Durham, NH Introduction.
Biofuel Enzymes A Study of Enzyme Kinetics. Enzymes Speed up the rate of reactions Speed up the rate of reactions Generally proteins Generally proteins.
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Synthetic Biology in the Quest for Renewable Energy
Enzymatic Hydrolysis of Cellulose and Hemicellulose in Solids Prepared by Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College Y. Y. Lee,
Richard T. Elander, National Renewable Energy Laboratory
Characteristics of Biomass Pretreatments Studied by the CAFI Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Michael R. Ladisch, Yoon Y. Lee and.
Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn University
Pretreatment Fundamentals Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Rajeev Kumar, Michael R. Ladisch, Yoon Y. Lee, Nate Mosier, Jack Saddler,
Release of Sugars for Fermentation to Ethanol by Enzymatic Digestion of Corn Stover Pretreated by Leading Technologies Charles E. Wyman, Dartmouth College/University.
Enzymatic Digestion of Corn Stover and Poplar Wood after Pretreatment by Leading Technologies Charles E. Wyman, Dartmouth College/University of California.
Ammonia Fiber Explosion (AFEX) for Pretreatment of Corn Stover: Recent Research Results Farzaneh Teymouri, Hasan Alizadeh, Lizbeth Laureano-Perez and Bruce.
Enzymatic hydrolysis of lignocelluloses Cloning, expression, and characterization of β-glucosidases Annette Sorensen 1,2, Peter S. Lübeck 1, Mette Lübeck.
Bioconversion of biomass to ethanol-an overview Renata Bura November 25 th, 2008.
Ethanol Production. Feedstock 1.Biomass 2.Starch.
Initial Comparative Process Economics of Leading Pretreatment Technologies Richard T. Elander, National Renewable Energy Laboratory Charles E. Wyman, Dartmouth.
Slide 1 Apollo Program for Biomass Liquids What Will it Take? Michael R. Ladisch Laboratory of Renewable Resources Engineering Agricultural and Biological.
Background Research and Market Analysis Ethanol is a bio-based, renewable oxygenated fuel (Saha) Used as a fuel oxygenate Lignocellulosic feedstocks need.
Yeast Hardening for Cellulosic Ethanol production Bianca A. Brandt Supervisor: Prof J Gorgens Co-Supervisor: Prof WH Van Zyl Department of Process Engineering.
Biofuels Now and Tomorrow Tom Williams National Renewable Energy Laboratory FLC Far West / Mid-Continent Meeting September 2005.
Engineering yeasts for next generation ethanol production
Creating a Secure and Sustainable Future Defining an Achievable Means of Meeting our Food, Fuel and Feed Needs Domestically Martha Schlicher, Ph.D. National.
Optimization of Controlled pH Liquid Hot Water Pretreatment of Corn Fiber and Stover Nathan Mosier, Rick Hendrickson, Youngmi Kim, Meijuan Zeng, Bruce.
Speaker: Jeng-Chen Liu(劉政成) Student ID: P
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
Optimal Conditions for Batch Tube Pretreatment Hot water only, 210 o C, 6 min -Total xylose yield is 52.1% % xylose and 106% glucose overall mass.
Production of Second-Generation Biofuels from Palm Wastes Shinichi Yano Biomass Technology Research Center, National Institute for Advanced Industrial.
Kevin Correia, Goutham Vemuri, Radhakrishnan Mahadevan Pathway Tools Conference, Menlo Park, CA March 6 th, 2013 Elucidating the xylose metabolising properties.
1 Lignocellulosic biomass to ethanol-hydrolysis and fermentation.
Pretreatment of Lignocellulosic Biomass: Update on Biomass Refining CAFI Studies Charles E. Wyman, Dartmouth College, Session Chair Tim Eggeman, Neoterics.
EMP171 “Role of enzymes processivity in degradation of recalcitrant polysaccharides” Priit Väljamäe – docent Silja Kuusk – research scientist Riin Kont.
1 Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
A Comparison of Batch, Stop- Flow-Stop, and Flowthrough Pretreatments of Corn Stover Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth.
Recent Research and Perspectives on Lignocellulose Conversion into Ethanol Bruce Dien October 25, 2006.
 Alcohols for fuel: Biological energy to usable energy Beth Papanek.
Towards Renewable Petrochemicals Engineering biology to convert waste into fuel To construct a library of defined BioBrick parts, each encoding an enzymatic.
Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
Impact of Inhibitors Associated with Lignocellulose Hydrolysate on CBP Yeast and Enzyme Activity Sizwe Mhlongo Energy Postgraduate Conference 2013.
Biomass Refining CAFI Overall Sugar Yields from Corn Stover via Thermochemical Hemicellulose Hydrolysis Followed by Enzymatic Hydrolysis Todd A. Lloyd.
Oligosaccarides and Polysaccharides
1 Auburn UniversityBiomass Refining CAFI Corn stover Wood chip Bagasse Rice straw Sawdust Biomass Ethanol Fuel.
Deconstruction by Enzymes 2: Hemicellulases Chun-Hung Lin Ph.D. 林 俊 宏 Institute of Biological Chemistry Academia Sinica
Master Thesis May 2010 New Pretreatment Methods for Lignocellulosic Residue for Second Generation Bioethanol Production Student: Yadhu Nath Guragain ID:
S-1007 Multi-State Research Committee
Ethanol as an alternative source of energy Bioethanol is produced from plants that harness the power of the sun to convert water and CO 2 to sugars (photosynthesis),
National Center for Agricultural Utilization Research, USDA-ARS
Optimizing conditions for sugar release from municipal solid wastes (MSW) for biofuel production Jwan J. Abdullah University of Nottingham Supervised by:
1 Wood Chemistry PSE 406 Bioenergy-Hydrolysis. 2 Agenda lEnzymatic hydrolysis »Cellulases »Experimental lFermentation »Yeast »Fermentation process »Inhibitors.
Biorefinery for Biofuel Production
Neal C. Connors, Ph.D. RISE Fellow HS 318,  B.S. Biology (chemistry minor) 1984 – Norwich University  Ph.D.
Phalaris aquatica L. lignocellulosic biomass as second generation bioethanol feedstock I. Pappas, Z. Koukoura, C. Kyparissides, Ch. Goulas and Ch. Tananaki.
Improved Galactose Fermentation of Saccharomyces cerevisiae Through Inverse Metabolic Engineering 1 조 조장 : 우대균 조원 : 김상민 박동주 박지연 이혁 길영욱.
Evaluation of a Flowthrough Reactor for Corn Stover Pretreatment Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth College Hanover,
Nassim NADERI MS Food Biotechnology Research Assistant
ETHANOL PRODUCTION FROM LIGNOCELLULOSIC MATERIALS
Valorisation of rapeseed meal for microbial astaxanthin production
Apollo Program for Biomass Liquids What Will it Take?
Investigating the Relationship between Characteristics of Heterogeneous Cellulose and Cellulase Activities Y-H Percival Zhang, Biological Systems Engineering,
General strategies of cellulose hydrolysis and utilization by aerobic (top) and anaerobic (bottom) bacteria. General strategies of cellulose hydrolysis.
Bioenergy-Hydrolysis
Schematic representation of the hydrolysis of amorphous and microcrystalline cellulose by noncomplexed (A) and complexed (B) cellulase systems. Schematic.
Bioenergy-Fermentation
Presentation transcript:

Current Opinion in Chemical Biology 2006, 10: Bioethanol Kevin A Gray, Lishan Zhao and Mark Emptage 강 현 우강 현 우 창해 연구소 수습 사원 Current Opinion in Chemical Biology Volume 10, Issue 2Current Opinion in Chemical Biology Volume 10, Issue 2, April 2006, Pages

Current Opinion in Chemical Biology 2006, 10: Introduction Thermochemical pretreatment Enzymatic depolymerization of cellulose and hemicellulose Cellulase engineering Enzyme–substrate interaction Hemicellulases Hexose and pentose fermentation Conclusions References Contents

Current Opinion in Chemical Biology 2006, 10: Introduction 현재 미국의 crude oil 매일 소비량 : 2 천만 barrels ( 그 중 60% 수입 ) US Energy Policy Act of 2005 ( 에서 오일산업은 2012 년까지 7.5 billion gal 의 renewable fuels 를 섞어 사용할 것을 요구. 또한 많은 주들이 E10 and E20 의 사용과 같은 renewable fuels standards 를 통과. 지금까지 가장 흔한 renewable fuels 는 에탄올이고, 미국에서 최근 연간 생산량이 4 billion gal 을 넘어서고 있다. 미국에서 에탄올 생산을 위한 주요한 자원은 corn grain (stach). 미국은 오직 옥수수로 부터 연간 13 billion gal 을 제공할 capacity 를 가지고 있고, 목표했던 7.5 billion gal 은 생각보다 빨리 도달할 것. 그러나 에탄올 생산의 증대는 공급의 제한성으로 인해 옥수수보다 다른 공급원 으로 인해 이루어 질 것이다.

Current Opinion in Chemical Biology 2006, 10: Biomass 의 구성 Cellulose (40-50%) Hemicellulose (25-35%) Lignin(15-20%) Introduction Starch -  -1,4 &  -1,6 결합 (amylose, amylopectin) VS VS Cellulose -  -1,4 결합 (crystalline, compact, resistant) Hemicellulose - xylane bacbone(  -1,4 결합 ) 에 mannose, arabinose, galactose, glucuronic acid, etc 의 가지결합 Lignin Lignin - hemicellulose 에 ferulic acid ester linkages 로 공유결합

Current Opinion in Chemical Biology 2006, 10: Figure 1. Schematic of the basic structure of hemicellulose. A, arabinose; FeA, ferulic acid; G, galactose; Glc, glucuronic acid; X, xylose. Introduction -> 이러한 복잡하고 밀집된 구조로 인해 starch 보다 발효성 당으로의 효소적 분해는 어렵고, 에탄올로의 전환 비용은 더 많이 든다.

Current Opinion in Chemical Biology 2006, 10: Figure 2. Schematic of biomass and starch processing that could occur in a biorefinery. In this review first, 열화학적 전처리단계 second, 효소적 당화 (cellulase, hemicellulase) thirdly, 특화된 미생물을 이용한 발효

Current Opinion in Chemical Biology 2006, 10: Thermochemical pretreatment 천연의 아무런 처리가 되지 않은 biomass 는 효소적 소화가 극히 힘들다. 그러므로, 여러가지 전처리 공정은 분해력을 향상시키기 위해 개발되어왔다. 전처리 공정은 식물의 세포벽을 허물고, 효소가 다당류에 잘 접근할 수 있도록 돕는다. hemicellulose 와 lignin 의 제거와 cellulose 의 분해능력 사이의 직접적인 연관성에 관한 연구 전처리 공정에 사용되는 화학약품은 강산에서 약산까지 다양 -> 각 biomass 의 주요 구성 성분에 따라 다양하게 영향 77 C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch and Y.Y. Lee, Coordinated development of leading biomass pretreatment technologies, Bioresour Technol 96 (2005), pp. 1959– S. Kim and M.T. Holtzapple, Effect of structural features on enzyme digestibility of corn stover, Bioresour Technol 97 (2006), pp. 583– C. Liu and C.E. Wyman, Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose, Bioresour Technol 96 (2005), pp. 1978– T.A. Lloyd and C.E. Wyman, Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids, Bioresour Technol 96 (2005), pp. 1967– N. Mosier, R. Hendrickson, N. Ho, M. Sedlak and M.R. Ladisch, Optimization of pH controlled liquid hot water pretreatment of corn stover, Bioresour Technol 96 (2005), pp. 1986–1993.

Current Opinion in Chemical Biology 2006, 10: Thermochemical pretreatment 전처리공정의 화학약품들은 가수분해물의 당 이외의 물질에도 영향을 미친다. 예를들어, 산성물질들은 액상에 furfural 의 농축을 야기하고, 반면 염기성 물질들은 가수분해물 내에 ferulate 와 acetate 의 농축을 야기할 수 있다. 이러한 물질들은 발효시 저해물질로 작용 이러한 전처리 공정에 대한 경제적 분석 전처리 공정에 대한 몇몇 전략들 1515 T. Eggeman and R.T. Elander, Process and economic analysis of pretreatment technologies, Bioresour Technol 96 (2005), pp. 2019– N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple and M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresour Technol 96 (2005), pp. 673– C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch and Y.Y. Lee, Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover, Bioresour Technol 96 (2005), pp. 2026–2032.

Current Opinion in Chemical Biology 2006, 10: Enzymatic depolymerization of cellulose and hemicellulose Cellulase – 세가지 타입의 효소로 구성 Hemicellulase – 다양한 종류의 효소로 구성 1. endoglucanases (EC ), which cleave internal β-1,4-glucosidic bonds; 2. exoglucanases (EC ), which processively act on the reducing and non-reducing ends of cellulose chains to release short-chain cello-oligosaccharides; 3. β-glucosidases (EC ), which hydrolyze soluble cellooligosaccharides (e.g. cellobiose) to glucose. 1. β-1,4-xylan (xylanases EC , β-xylosidases EC ) 2. various side chains (α-l-arabinofuranosidases EC , α-glucuronidases EC , acetyl xylan esterases EC , ferulic acid esterases EC , α-galactosidases EC )

Current Opinion in Chemical Biology 2006, 10: Enzymatic depolymerization of cellulose and hemicellulose Complexed system – cellulosome ; 혐기성 미생물이나 곰팡이류에서 존재, 호기성 미생물의 경우 별개의 효소를 배출하는 경향 지금까지 이러한 효소들은 박테리아나 곰팡이류에서 분리, 또는 미생물을 이용한 cellulase 생산 생산 경비 절감 - T. reesei cellulases 의 10 배 이상의 단가 감소 -> 효소 자체의 engineering 이나 생산기술의 개발로 지속적인 cost 감소가 필요 A.L. Demain, M. Newcomb and J.H.D. Wu, Cellulase, clostridia, and ethanol, Microbiol Mol Biol Rev 69 (2005), pp. 124– R.H. Doi and A. Kosugi, Cellulosomes: plant-cell-wall-degrading enzyme complexes, Nat Rev Microbiol 2 (2004), pp. 541– L.R. Lynd, W.H. van Zyl, J.E. McBride and M. Laser, Consolidated bioprocessing of cellulosic biomass: an update, Curr Opin Biotechnol 16 (2005), pp. 577– D. Greer, Spinning straw into fuel, Biocycle 46 (2005), pp. 61–65.

Current Opinion in Chemical Biology 2006, 10: Cellulase engineering Cellulase 의 효소 능력의 향상이나 효소의 사용량을 줄이기 위한 몇몇 시도가 계속되어 옴. 그 첫 시도가 cellobiohydrolase 임 - 일반적인 cellulase system 의 60-80% 를 차지. ; Teter et al. [27 ] - combination of site-directed mutagenesis, site-saturation mutagenesis,27 error-prone PCR and DNA shuffling 을 이용하여 T. reesei Cel7A 의 변이체 제조. : thermal stability 와 thermal activity 향상. Day et al. [28] - site-directed mutagenesis 를 이용하여28 우수한 Hypocrea jecorena cellobiohydrolase Cel7A (CBH1) variants 발견. : thermostability 와 reversibility 향상. Bower [29] - fusion protein (Acidothermus cellulolyticus 로부터 GH5A 를 T. reesei cellobiohydrolase29 CBH1 에 연결 -> 전처리 후 당화시 효과적 Bower BS (Genencor International IU): Fusion proteins of an exocellobiohydrolase and an endoglucanase for use in the saccharification of cellulose and hemicellulose patent Teter S, Cherry J, Ward C, Jones A, Harris P, Yi J (Novozymes Biotech IU): Variants of cellobiohydrolase I from Trichoderma reesei with improved properties. 2004, Day AG (Genencor International IU): Novel variant Hypocrea jecorina CBH I cellulases, their production with recombinant cells, and their uses. 2003, patent

Current Opinion in Chemical Biology 2006, 10: Enzyme–substrate interaction Cellulase 는 종종 기질과 효소 사이의 interaction 을 매개하는 carbohydrate-binding modules (CBMs) 을 포함 -> 이것이 기질과의 친화력이나 선택성을 향상시키는 타켓 CBMs 의 구조에서의 미묘한 차이가 매우 다른 ligand specificity 를 야기할 수 있다.[32 ].32 Lignin – 가수분해물에 존재함으로 cellulase 를 불활성화 시키거나 비 생산적 결합 유도 ; Berlin et al. [35] - lignocellulosic hydrolysis 에 대해서 cellulases 의 activity 를 향상 시키는 새로운35 접근법 ; weak lignin-binding enzymes 을 사용하여 결과적으로 활성증가. Palonen [36] - location and structure of lignin 가 lignin 의 총량보다 효소적 가수분해에 영향을36 미치는 결정적 인자임을 밝힘 A.B. Boraston, D.N. Bolam, H.J. Gilbert and G.J. Davies, Carbohydrate-binding modules: fine-tuning polysaccharide recognition, Biochem J 382 (2004), pp. 769– A. Berlin, N. Gilkes, A. Kurabi, R. Bura, M. Tu, D. Kilburn and J. Saddler, Weak lignin-binding enzymes. A novel approach to improve activity of cellulases for hydrolysis of lignocellulosics, Appl Biochem Biotechnol (2005), pp. 163– H. Palonen, Role of lignin in the enzymatic hydrolysis of lignocellulose, VTT Publications 520 (2004), pp. 1–80.

Current Opinion in Chemical Biology 2006, 10: Hemicellulases Hemicellulase 의 효과적인 분해는 여러 효소들의 시너지 효과를 요구. 더 중요한 것은 hemicellulase 가 cellulose 의 가수분해를 매개. -> cellulose fiber 의 노출, 접근성 향상. 그러나, 일반적으로 산을 이용한 전처리 과정에서 당화전에 hemicellulose 는 제거 되므로 cellulose 에 비해 관심도 적었고, 개발도 미미. -> 산처리 없는 전처리 공정을 이용시엔 hemicellolose 가 남아 hemicellulase 가 요구 지난 몇 년 사이에는 hemicellulase 에 대한 연구 진행 ; xylanase 의 구조와 기능에 대한 연구, 효소적 특이성에 관한 연구, hemicellulase CBMs 연구 바이오에탄올 생산을 위한 단가를 낮추기 위해 상업적인 hemicellulose 의 단가 하락을 위한 개발도 앞으론 필요 3737 S. Kaneko, H. Ichinose, Z. Fujimoto, A. Kuno, K. Yura, M. Go, H. Mizuno, I. Kusakabe and H. Kobayashi, Structure and function of a family 10 β-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi cex, J Biol Chem 279 (2004), pp – G. Pell, L. Szabo, S.J. Charnock, H. Xie, T.M. Gloster, G.J. Davies and H.J. Gilbert, Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases, J Biol Chem 279 (2004), pp – G. Pell, E.J. Taylor, T.M. Gloster, J.P. Turkenburg, C.M.G.A. Fontes, L.M.A. Ferreira, T. Nagy, S.J. Clark, G.J. Davies and H.J. Gilbert, The mechanisms by which family 10 glycoside hydrolases bind decorated substrates, J Biol Chem 279 (2004), pp. 9597– M. Vardakou, J. Flint, P. Christakopoulos, R.J. Lewis, H.J. Gilbert and J.W. Murray, A family 10 thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants, J Mol Biol 352 (2005), pp. 1060– A. Levasseur, D. Navarro, P.J. Punt, J.P. Belaich, M. Asther and E. Record, Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products, Appl Environ Microbiol 71 (2005), pp. 8132– Y. Lin and S. Tanaka, Ethanol fermentation

Current Opinion in Chemical Biology 2006, 10: Hexose and pentose fermentation Biomass 로 부터의 당은 hexose 와 pentose 의 혼합물. - 대부분의 야생 효모는 pentose ( 주로 xylose) 를 대사하지 못하므로 에탄올 수율이 떨어짐. Gene manipulation 과 metabolic engineering 을 이용한 개량균주의 개발 시도. - pentose 를 대사할 수 있는 효모 개발 - 에탄올 수율을 향상시킬수 있는 균주 개발 - pentose, hexose 둘다 대사할 수 있는 균주 개발 - 가수분해물 내의 저해제들에 대한 내성을 가진 균주 개발 - Zymomonas mobilis 의 이용과 균주 개량 4242 Y. Lin and S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Appl Microbiol Biotechnol 69 (2005) B.S. Dien, M.A. Cotta and T.W. Jeffries, Bacteria engineered for fuel ethanol production: current status, Appl Microbiol Biotechnol 63 (2003), pp. 258–266. A good short review covering the literature through early 2003 on the three primary recombinant bacterial strains being developed (E. coli, Klebsiella oxytoca, and Zymomonas mobilis) for producing ethanol from mixed sugars T.W. Jeffries and Y.S. Jin, Metabolic engineering for improved fermentation of pentoses by yeasts, Appl Microbiol Biotechnol 63 (2004), pp. 495– B. Hahn-Hagerdal and N. Pamment, Microbial pentose metabolism, Appl Biochem Biotechnol (2004), pp. 1207– M. Sedlak and N.W.Y. Ho, Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose, Appl Biochem Biotechnol (2004), pp. 403– M. Sonderegger, M. Jeppsson, B. Hahn-Haegerdal and U. Sauer, Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis, Appl Environ Microbiol 70 (2004), pp. 2307–

Current Opinion in Chemical Biology 2006, 10: Conclusions 에탄올 공정의 상업화의 key 는 결국 각 공정간의 운영단가 하락과 자금의 감소 효소 비용의 절감 -> protein engineering 과 process development ; - novel enzyme 개발, protein fusion, 효소 활성 증가 - 다양한 당을 발효할 수 있는 미생물 균주 개발과 전처리 후 가수분해물의 저해물질이나 독성 물질에 대한 내성 균주 개발도 필요.

Current Opinion in Chemical Biology 2006, 10: Thank you for your attention~!! THE END