Mr. Karns Biology, Seventh Edition Chapter 5 The Structure and Function of Macromolecules Carbohydrates, Proteins, Nucleic Acids and Fats.

Slides:



Advertisements
Similar presentations
THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Advertisements

Short polymer HO 123H H Unlinked monomer Dehydration removes a water molecule, forming a new bond HO H2OH2O H Longer polymer (a) Dehydration reaction.
1 Macromolecules – Are large molecules composed of a large number of repeated subunits – Are complex in their structures Figure 5.1.
Lipids are a diverse group of hydrophobic molecules Lipids are the one class of large biological molecules that do not form polymers Lipids are hydrophobic.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Unit 1 – The Chemistry of Life
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings I-2- 1 The Structure and Function of Nucleic Acids and Proteins Macromolecules.
Chapter 3 The Chemistry of Organic Molecules
1 Biological Macromolecules Much larger than other particles found in cells Made up of smaller subunits Found in all cells Great diversity of functions.
The structure and function of large biological molecules
Chapter 5.
1 Chapter 5 The Structure and Function of Macromolecules.
1 Chapter 5 The Structure and Function of Macromolecules.
Glucose (a) Linear and ring forms(b) Abbreviated ring structure.
BSC Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life – Chemistry review (30-46) – Water (47-57) – Carbon (58-67)
Macromolecules Chapter 5. Macromolecules Large complex molecules Carbohydrates, proteins, lipids & nucleic acids.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 5 The Structure and Function of Macromolecules.
1 Organic Chemistry The Structure and Function of Macromolecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Focus Phospholipids are the molecules that make up biological membranes. Below.
Review Question 1 How many molecules of water are needed to completely hydrolyze a polymer that is 10 monomers long? 9.
1 Chapter 5 The Structure and Function of Macromolecules.
Chapter 3 Biochemistry.
1 Chapter 2 The Structure and Function of Macromolecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2006 Cynthia Garrard publishing under Canyon Design Chapter 5 - Macromolecules Overview: The Molecules of Life – Another level in the hierarchy.
1 Chapter 5 The Structure and Function of Macromolecules Biology, 7 th Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
1 Chapter 5 The Structure and Function of Macromolecules.
Chapter 5 The Structure and Function of Macromolecules 1.
Unit 2: Pre-test –Avg = 5 (out of 23) –Range = unknown Termites –Follow Paper Mate ink –Acts as a pheromone Test corrections – due tomorrow I will scream.
Carbohydrates Carbohydrates serve as fuel and building material
1 Chapter 5 The Structure and Function of Macromolecules.
End Show Slide 1 of 37 Biology Organics Mr. Karns.
Most macromolecules are polymers, built from monomers Three of the classes of life’s organic molecules are polymers –Carbohydrates –Proteins –Nucleic acids.
Ch 5. Large Biological Molecules Critically important molecules in all living things divided into 4 classes: Lipids (fats) Carbohydrates (sugars) Proteins.
1 Lipids Lipids are hydrophobic molecules Mostly C-H (non-polar) are the one class of large biological molecules that do not consist of polymers Uses:
AP Biology Mrs. Ramon. The Molecules of Life Macromolecules LARGE molecules Four classes: 1. Carbohydrates 2. Lipids (Fats) 3. Proteins 4. Nucleic Acids.
Dehydration removes a water molecule, forming a new bond H2O
Molecules of Life All living things are made up of four classes of large molecules: Carbohydrates, lipids, proteins, and nucleic acids. Macromolecules.
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
Macromolecules & the Origin of Life
Chapter 3 The Molecules of Cells.
Carbon and the Molecular Diversity of Life
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
Chapter 5 Macromolecules.
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
The structure and Function of Macromolecules
Proteins Proteins have many structures, resulting in a wide range of functions Proteins do most of the work in cells and act as enzymes 2. Proteins are.
The Structure and Function of Macromolecules
The Structure and Function of Macromolecules
copyright cmassengale
Presentation transcript:

Mr. Karns Biology, Seventh Edition Chapter 5 The Structure and Function of Macromolecules Carbohydrates, Proteins, Nucleic Acids and Fats

Overview: The Molecules of Life – Another level in the hierarchy of biological organization is reached when small organic molecules are joined together

Macromolecules – Are large molecules composed of smaller molecules – Are complex in their structures Figure 5.1

Concept 5.1: Most macromolecules are polymers, built from monomers Three of the classes of life’s organic molecules are polymers – Carbohydrates – Proteins – Nucleic acids

A polymer – Is a long molecule consisting of many similar building blocks called monomers

The Synthesis and Breakdown of Polymers Monomers form larger molecules by condensation reactions called dehydration reactions (a) Dehydration reaction in the synthesis of a polymer HOH H H H2OH2O Short polymer Unlinked monomer Longer polymer Dehydration removes a water molecule, forming a new bond Figure 5.2A

Polymers can disassemble by – Hydrolysis (b) Hydrolysis of a polymer HO H H H2OH2O H Hydrolysis adds a water molecule, breaking a bond Figure 5.2B

The Diversity of Polymers Each class of polymer – Is formed from a specific set of monomers HOH

Although organisms share the same limited number of monomer types, each organism is unique based on the arrangement of monomers into polymers An immense variety of polymers can be built from a small set of monomers

Concept 5.2: Carbohydrates serve as fuel and building material Carbohydrates – Include both sugars and their polymers

Sugars Monosaccharides – Are the simplest sugars – Can be used for fuel – Can be converted into other organic molecules – Can be combined into polymers

Examples of monosaccharides Triose sugars (C 3 H 6 O 3 ) Pentose sugars (C 5 H 10 O 5 ) Hexose sugars (C 6 H 12 O 6 ) H C OH HO C H H C OH HO C H H C OH C O H C OH HO C H H C OH C O H H H HHH H H HHH H H H C CCC O O O O Aldoses Glyceraldehyde Ribose Glucose Galactose Dihydroxyacetone Ribulose Ketoses Fructose Figure 5.3

Monosaccharides – May be linear – Can form rings H H C OH HO C H H C OH H C O C H H OH 4C4C 6 CH 2 OH 5C5C H OH C H OH H 2 C 1C1C H O H OH 4C4C 5C5C 3 C H H OH OH H 2C2C 1 C OH H CH 2 OH H H OH HO H OH H (a) Linear and ring forms. Chemical equilibrium between the linear and ring structures greatly favors the formation of rings. To form the glucose ring, carbon 1 bonds to the oxygen attached to carbon 5. OH 3 O H O O 6 1 Figure 5.4

Disaccharides – Consist of two monosaccharides – Are joined by a glycosidic linkage

Examples of disaccharides Dehydration reaction in the synthesis of maltose. The bonding of two glucose units forms maltose. The glycosidic link joins the number 1 carbon of one glucose to the number 4 carbon of the second glucose. Joining the glucose monomers in a different way would result in a different disaccharide. Dehydration reaction in the synthesis of sucrose. Sucrose is a disaccharide formed from glucose and fructose. Notice that fructose, though a hexose like glucose, forms a five-sided ring. (a) (b) H HO H H OH H OH O H CH 2 OH H HO H H OH H OH O H CH 2 OH H O H H OH H OH O H CH 2 OH H H2OH2O H2OH2O H H O H HO H OH O H CH 2 OH HO OH H CH 2 OH H OH H H HO OH H CH 2 OH H OH H O O H OH H CH 2 OH H OH H O H OH CH 2 OH H HO O CH 2 OH H H OH O O – 4 glycosidic linkage 1–2 glycosidic linkage Glucose Fructose Maltose Sucrose OH H H Figure 5.5

Polysaccharides – Are polymers of sugars – Serve many roles in organisms

Storage Polysaccharides Starch – Is a polymer consisting entirely of glucose monomers

– Is the major storage form of glucose in plants Chloroplast Starch Amylose Amylopectin 1  m (a) Starch: a plant polysaccharide Figure 5.6

Glycogen – Consists of glucose monomers – Is the major storage form of glucose in animals Mitochondria Giycogen granules 0.5  m (b) Glycogen: an animal polysaccharide Glycogen Figure 5.6

Structural Polysaccharides Cellulose – Is a polymer of glucose

– Has different glycosidic linkages than starch (c) Cellulose: 1– 4 linkage of  glucose monomers H O O CH 2 O H H OH H H H H HO 4 C C C C C C H H H OH H H O CH 2 O H H H H OH H H HO 4 OH CH 2 O H O OH HO 4 1 O CH 2 O H O OH O CH 2 O H O OH CH 2 O H O OH O O CH 2 O H O OH HO 4 O 1 OH O O CH 2 O H O OH O O (a)  and  glucose ring structures (b) Starch: 1– 4 linkage of  glucose monomers 1  glucose  glucose CH 2 O H Figure 5.7 A–C

Plant cells 0.5  m Cell walls Cellulose microfibrils in a plant cell wall  Microfibril CH 2 OH OH OHOH O O O CH 2 OH O O OH O CH 2 OH OH O O CH 2 OH O O OHOH O O OHOH O O OH CH 2 OHOH O O CH 2 OH OH O CH 2 OH O O OHCH 2 OH OH  Glucose monomer O O O O O O Parallel cellulose molecules are held together by hydrogen bonds between hydroxyl groups attached to carbon atoms 3 and 6. About 80 cellulose molecules associate to form a microfibril, the main architectural unit of the plant cell wall. A cellulose molecule is an unbranched  glucose polymer. OH O O Cellulose molecules Figure 5.8 – Is a major component of the tough walls that enclose plant cells

Cellulose is difficult to digest – Cows have microbes in their stomachs to facilitate this process Figure 5.9

Chitin, another important structural polysaccharide – Is found in the exoskeleton of arthropods – Can be used as surgical thread (a) The structure of the chitin monomer. O CH 2 O H OH H H H NH C CH 3 O H H (b) Chitin forms the exoskeleton of arthropods. This cicada is molting, shedding its old exoskeleton and emerging in adult form. (c) Chitin is used to make a strong and flexible surgical thread that decomposes after the wound or incision heals. OH Figure 5.10 A–C

Concept 5.3: Lipids are a diverse group of hydrophobic molecules Lipids – Are the one class of large biological molecules that do not consist of polymers – Share the common trait of being hydrophobic

Fats – Are constructed from two types of smaller molecules, a single glycerol and usually three fatty acids (b) Fat molecule (triacylglycerol) H H H H H H H H H H H H H H H H O Figure 5.11

Fatty acids – Vary in the length and number and locations of double bonds they contain

Saturated fatty acids – Have the maximum number of hydrogen atoms possible – Have no double bonds (a) Saturated fat and fatty acid Stearic acid Figure 5.12

Unsaturated fatty acids – Have one or more double bonds (b) Unsaturated fat and fatty acid cis double bond causes bending Oleic acid Figure 5.12

Phospholipids – Have only two fatty acids – Have a phosphate group instead of a third fatty acid

Phospholipid structure – Consists of a hydrophilic “head” and hydrophobic “tails” CH 2 O P O O O CH CH 2 OO C O C O Phosphate Glycerol (a) Structural formula (b) Space-filling model Fatty acids (c) Phospholipid symbol Hydrophobic tails Hydrophilic head Hydrophobic tails – Hydrophilic head CH 2 Choline + Figure 5.13 N(CH 3 ) 3

The structure of phospholipids – Results in a bilayer arrangement found in cell membranes Hydrophilic head WATER Hydrophobic tail Figure 5.14

Steroids – Are lipids characterized by a carbon skeleton consisting of four fused rings

One steroid, cholesterol – Is found in cell membranes – Is a precursor for some hormones HO CH 3 H3CH3C Figure 5.15

Concept 5.4: Proteins have many structures, resulting in a wide range of functions – Proteins Have many roles inside the cell

An overview of protein functions Table 5.1

Enzymes – Are a type of protein that acts as a catalyst, speeding up chemical reactions Substrate (sucrose) Enzyme (sucrase) Glucose OH H O H2OH2O Fructose 3 Substrate is converted to products. 1 Active site is available for a molecule of substrate, the reactant on which the enzyme acts. Substrate binds to enzyme Products are released. Figure 5.16

Polypeptides – Are polymers of amino acids A protein – Consists of one or more polypeptides

Amino Acid Monomers Amino acids – Are organic molecules possessing both carboxyl and amino groups – Differ in their properties due to differing side chains, called R groups

20 different amino acids make up proteins O O–O– H H3N+H3N+ C C O O–O– H CH 3 H3N+H3N+ C H C O O–O– C C O O–O– H H3N+H3N+ CH CH 3 CH 2 C H H3N+H3N+ CH 3 CH 2 CH C H H3N+H3N+ C CH 3 CH 2 C H3N+H3N+ H C O O–O– C H3N+H3N+ H C O O–O– NH H C O O–O– H3N+H3N+ C CH 2 H2CH2C H2NH2N C H C Nonpolar Glycine (Gly) Alanine (Ala) Valine (Val)Leucine (Leu)Isoleucine (Ile) Methionine (Met) Phenylalanine (Phe) C O O–O– Tryptophan (Trp) Proline (Pro) H3CH3C Figure 5.17 S O O–O–

Amino Acid Polymers Amino acids – Are linked by peptide bonds OH DESMOSOMES OH CH 2 C N H C H O HOH Peptide bond OH H H HH H H H H H H H H N N N N N SH Side chains SH OO OO O H2OH2O CH 2 C C C CCC C C C C Peptide bond Amino end (N-terminus) Backbone (a) Figure 5.18 (b) Carboxyl end (C-terminus)

Determining the Amino Acid Sequence of a Polypeptide The amino acid sequences of polypeptides – Were first determined using chemical means – Can now be determined by automated machines

Protein Conformation and Function A protein’s specific conformation – Determines how it functions

Two models of protein conformation (a) A ribbon model (b) A space-filling model Groove Figure 5.19

Four Levels of Protein Structure Primary structure – Is the unique sequence of amino acids in a polypeptide Figure 5.20 – Amino acid subunits + H 3 N Amino end o Carboxyl end o c Gly ProThr Gly Thr Gly Glu Seu Lys Cys Pro Leu Met Val Lys Val Leu Asp Ala Val Arg Gly Ser Pro Ala Gly lle Ser Pro Phe His Glu His Ala Glu Val Phe Thr Ala Asn Asp Ser Gly Pro Arg Tyr Thr lle Ala Leu Ser Pro Tyr Ser Tyr Ser Thr Ala Val Thr Asn Pro Lys Glu Thr Lys Ser Tyr Trp Lys Ala Leu Glu Lle Asp

OC  helix  pleated sheet Amino acid subunits N C H C O C N H C O H R C N H C O H C R N H H R C O R C H N H C O H N C O R C H N H H C R C O C O C N H H R C C O N H H C R C O N H R C H C O N H H C R C O N H R C H C O N H H C R C O N H H C R N H O O C N C R C H O C H R N H O C R C H N H O C H C R N H C C N R H O C H C R N H O C R C H H C R N H C O C N H R C H C O N H C Secondary structure – Is the folding or coiling of the polypeptide into a repeating configuration – Includes the  helix and the  pleated sheet H H Figure 5.20

Tertiary structure – Is the overall three-dimensional shape of a polypeptide – Results from interactions between amino acids and R groups CH 2 CH OHOH O C HO CH 2 NH 3 + C -O-O CH 2 O SS CH CH 3 H3CH3C H3CH3C Hydrophobic interactions and van der Waals interactions Polypeptide backbone Hyrdogen bond Ionic bond CH 2 Disulfide bridge

Quaternary structure – Is the overall protein structure that results from the aggregation of two or more polypeptide subunits Polypeptide chain Collagen  Chains  Chains Hemoglobin Iron Heme

The four levels of protein structure + H 3 N Amino end Amino acid subunits  helix

Sickle-Cell Disease: A Simple Change in Primary Structure Sickle-cell disease – Results from a single amino acid substitution in the protein hemoglobin

Hemoglobin structure and sickle-cell disease Fibers of abnormal hemoglobin deform cell into sickle shape. Primary structure Secondary and tertiary structures Quaternary structure Function Red blood cell shape Hemoglobin A Molecules do not associate with one another, each carries oxygen. Normal cells are full of individual hemoglobin molecules, each carrying oxygen     10  m     Primary structure Secondary and tertiary structures Quaternary structure Function Red blood cell shape Hemoglobin S Molecules interact with one another to crystallize into a fiber, capacity to carry oxygen is greatly reduced.  subunit Normal hemoglobin Sickle-cell hemoglobin... Figure 5.21 Exposed hydrophobic region ValThrHisLeuProGlulGluValHisLeu Thr Pro Val Glu

What Determines Protein Conformation? Protein conformation – Depends on the physical and chemical conditions of the protein’s environment

Denaturation – Is when a protein unravels and loses its native conformation – (Heating causes Denaturation) Denaturation Renaturation Denatured proteinNormal protein Figure 5.22

The Protein-Folding Problem Most proteins – Probably go through several intermediate states on their way to a stable conformation

Chaperonins – Are protein molecules that assist in the proper folding of other proteins Hollow cylinder Cap Chaperonin (fully assembled) Steps of Chaperonin Action: An unfolded poly- peptide enters the cylinder from one end. The cap attaches, causing the cylinder to change shape in such a way that it creates a hydrophilic environment for the folding of the polypeptide. The cap comes off, and the properly folded protein is released. Correctly folded protein Polypeptide Figure 5.23

X-ray crystallography – Is used to determine a protein’s three- dimensional structure X-ray diffraction pattern Photographic film Diffracted X-rays X-ray source X-ray beam Crystal Nucleic acidProtein (a) X-ray diffraction pattern (b) 3D computer model Figure 5.24

Concept 5.5: Nucleic acids store and transmit hereditary information Genes – Are the units of inheritance – Program the amino acid sequence of polypeptides – Are made of nucleotides

The Roles of Nucleic Acids There are two types of nucleic acids – Deoxyribonucleic acid (DNA) – Ribonucleic acid (RNA)

DNA – Stores information for the synthesis of specific proteins

– Directs RNA synthesis – Directs protein synthesis through RNA Synthesis of mRNA in the nucleus Movement of mRNA into cytoplasm via nuclear pore Synthesis of protein NUCLEUS CYTOPLASM DNA mRNA Ribosome Amino acids Polypeptide mRNA Figure 5.25

The Structure of Nucleic Acids Nucleic acids – Exist as polymers called polynucleotides (a) Polynucleotide, or nucleic acid 3’C 5’ end 5’C 3’C 5’C 3’ end OH Figure 5.26 O O O O

Each polynucleotide – Consists of monomers called nucleotides Nitrogenous base Nucleoside O O OO OO P CH 2 5’C 3’C Phosphate group Pentose sugar (b) Nucleotide Figure 5.26 O

Nucleotide Monomers Nucleotide monomers – Are made up of nucleosides and phosphate groups (c) Nucleoside components Figure 5.26 CH Uracil (in RNA) U Ribose (in RNA) Nitrogenous bases Pyrimidines C N N C O H NH 2 CH O C N H HN C O C CH 3 N HN C C H O O Cytosine C Thymine (in DNA) T N HC N C C N C CH N NH 2 O N HC N H H C C N NH C NH 2 Adenine A Guanine G Purines O HOCH 2 H H H OH H O HOCH 2 H H H OH H Pentose sugars Deoxyribose (in DNA) Ribose (in RNA) OH CH Uracil (in RNA) U 4’ 5”5” 3’ OH H 2’ 1’ 5”5” 4’ 3’ 2’ 1’

Nucleotide Polymers Nucleotide polymers – Are made up of nucleotides linked by the–OH group on the 3´ carbon of one nucleotide and the phosphate on the 5´ carbon on the next

The sequence of bases along a nucleotide polymer – Is unique for each gene

The DNA Double Helix Cellular DNA molecules – Have two polynucleotides that spiral around an imaginary axis – Form a double helix

The DNA double helix – Consists of two antiparallel nucleotide strands 3’ end Sugar-phosphate backbone Base pair (joined by hydrogen bonding) Old strands Nucleotide about to be added to a new strand A 3’ end 5’ end New strands 3’ end 5’ end Figure 5.27

The nitrogenous bases in DNA – Form hydrogen bonds in a complementary fashion (A with T only, and C with G only)

DNA and Proteins as Tape Measures of Evolution Molecular comparisons – Help biologists sort out the evolutionary connections among species

The Theme of Emergent Properties in the Chemistry of Life: A Review Higher levels of organization – Result in the emergence of new properties Organization – Is the key to the chemistry of life