Mirjam Cvetič Non-perturbative effects in F- Theory Compactifications.

Slides:



Advertisements
Similar presentations
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Advertisements

 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Calabi-Yau compactifications: results, relations & problems
SUSY Breaking in Local String Models J.P. Conlon, A. Maharana, FQ arXiv: [hep-th] ] R. Blumenhagen, J.P. Conlon, S. Krippendorf, S.Moster, FQ.
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
M-Theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M.
Massive type IIA string theory cannot be strongly coupled Daniel L. Jafferis Institute for Advanced Study 16 November, 2010 Rutgers University Based on.
The partition function of fluxed M5-instantons in F-theory Max Kerstan ITP, Universität Heidelberg String Phenomenology 2012, Cambridge Based on work with.
Higgs Bundles and String Phenomenology M. Wijnholt, LMU Munich String-Math Philadelphia, June
Heterotic strings and fluxes Based on: K. Becker, S. Sethi, Torsional heterotic geometries, to appear. K. Becker, C. Bertinato, Y-C. Chung, G. Guo, Supersymmetry.
Geometric Transitions 25 Giugno 2007 Michele Rossi.
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
Anomaly cancellations on heterotic 5-branes ( 前編 ) 矢田 雅哉.
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
Summing the Instantons in the Heterotic String Jock McOrist University of Chicago , with Ilarion Melnikov October 28 th, Rutgers University.
Random Matrix Theory Workshop NBIA May 2007 Large N double scaling limits in Gauge Theories and Matrix Models Gaetano Bertoldi Swansea University.
Title of talk1 String Model Building Stuart Raby String Pheno 09 Warsaw University June 19, 2009 Savoy Hotel M ü nchen I Amalienstra ß e 25 I M ü.
Gauge/gravity duality and meta-stable SUSY breaking Sebastián Franco Princeton University Based on:hep-th/ : Argurio, Bertolini, Franco and Kachru.
Quark masses from Gaugino Condensation in String Theories Christos Kokorelis Based on : C.K, [hep-th] ; C.K, V.E.Mayes, D,V. Nanopoulos,
Three-generation model and flavor symmetry in string theory 桑木野 省吾 ( 益川塾 ) Collaborator : Florian Beye (Nagoya university) Tatsuo Kobayashi (Hokkaido university)
Road to the MSSM thru M theory ? Stuart Raby University of Michigan Ann Arbor May 5, 2007.
Topological String Theory and Black Holes Eurostrings 2006, Cambridge, UK - review - w/ C. Vafa, E.Verlinde, hep-th/ work in progress Robbert.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Title of talk1 A Fertile Patch in the Heterotic Landscape Stuart Raby Rutgers University March 24, 2009.
Matrix factorisations and D-branes Matthias Gaberdiel ETH Zürich Cambridge, 3 April 2006.
Large Volume String Compactifications hep-th/ , , , , hep-ph/ and to appear F. Quevedo, Cambridge. UKBSM Liverpool 2007.
Meta-stable Vacua in SQCD and MQCD David Shih Harvard University K. Intriligator, N. Seiberg and DS hep-th/ I. Bena, E. Gorbatov, S. Hellerman,
String Theory Books MBG 60 April 7, Chronology JHS: , Princeton U. MBG: , IAS 1972: JHS to Caltech, MBG to England 1979: Begin collaboration.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
SUSY Breaking in D-brane Models Beyond Orbifold Singularities Sebastián Franco Durham University José F. Morales INFN - Tor Vergata.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Axion and anomalous U(1) gauge symmetry Axion and anomalous U(1) gauge symmetry in string theory in string theory Kiwoon Choi (KAIST) ASK 2011 Apr.11 –
Algebroids, heterotic moduli spaces and the Strominger system James Gray, Virginia Tech Based on work with: Alexander Haupt and Andre Lukas ????
Unification Hints The Standard Model: Partial Unification.
ANOMALIES AND SMALL BLACK HOLES Finn Larsen University of Michigan M-Theory in the City Queen Mary University of London, Nov 9-11, 2006.
Anomalous U(1)΄s, Chern-Simons couplings and the Standard Model Pascal Anastasopoulos (INFN, Roma “Tor Vergata”) Pascal Anastasopoulos (INFN, Roma “Tor.
Title of talk1 Unification & B-L in String Theory Stuart Raby B-L Workshop, LBL September 21, 2007.
Stringy Predictions for Particle Physics Cumrun Vafa May 9, 2012 Phenomenology 2012 Symposium University of Pittsburgh.
Meta-stable Supersymmetry Breaking in Spontaneously Broken N=2 SQCD Shin Sasaki (Univ. of Helsinki) [hep-th/ (M.Arai, C.Montonen, N.Okada and.
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
Introduction to Strings Yoshihisa Kitazawa KEK Nasu lecture 9/25/06.
Title of talk1 A Fertile Patch in the Heterotic Landscape Stuart Raby String Phenomenology CERN August 11, 2008.
The LARGE Volume String Scenarios F. Quevedo, Cambridge/ICTP. Havana, Cuba J. Conlon, V. Balasubramanian, P. Berglund, FQ +….since 2005 M. Dolan,
Meta-stable Supersymmetry Breaking in an N=1 Perturbed Seiberg-Witten Theory Shin Sasaki (Univ. of Helsinki, Helsinki Inst. of Physics) Phys. Rev. D76.
Heterotic—F Theory Duality Revisited
Laboratoire Charles Coulomb
At the IFT workshop 28/Sep., Challenges for String Theory at the LHC era 2.Constraints on GUT 7-brane Topology in F- theory 3.Challenges for String.
Constructing the Standard Model Group in F-theory
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
Holomorphic Anomaly Mediation Yu Nakayama (Caltech) arXiv: and to appear.
Happy Golden Age Peter!!!. Phenomenological Aspects of D-branes at Singularities F. Quevedo, Cambridge/ICTP. Planck 2011/PeterFest, Lisbon S. Krippendorf,
Recent Developments in LARGE Volume String Scenario F. Quevedo, Cambridge/ICTP. Planck 2010, CERN, May-June R. Blumenhagen, J. Conlon, S. Krippendorf,
P-Term Cosmology A.C. Davis (with C. Burrage) ,
Perturbative vs Non- Perturbative Effects for Moduli Stabilisation and Cosmology J. Conlon, FQ [hep-ph] M. Cicoli, J. Conlon, FQ, [hep-th]
GEOMETRIC DESCRIPTION OF THE STANDARD MODEL Kang-Sin CHOI Ewha Womans University SUSY 14, University of Manchester June 22, 2014 Based on
CERNTR, 16 February 2012 Non-perturbative Physics from String Theory Dr. Can Kozçaz, CERN.
1 Marginal Deformations and Penrose limits with continuous spectrum Toni Mateos Imperial College London Universitat de Barcelona, December 22, 2005.
Multiple Brane Dynamics: D-Branes to M-Branes Neil Lambert King’s College London Annual UK Theory Meeting Durham 18 December 2008 Up from String Theory.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Three family GUT-like models from heterotic string
STRING THEORY AND M-THEORY: A Modern Introduction
Elementary E-strings Choi, Kang Sin Ewha Womans University and IBS
Heterotic—IIA duality map of discrete data
Kähler Moduli Inflation
Dimer models and orientifolds
Late-time Cosmology with String Gases
F-theory and its Applications to Phenomenology
Exceptional gauge groups in F-theory models without section
Heterotic strings and fluxes: status and prospects
Heterotic--F Theory Duality Revisited
Presentation transcript:

Mirjam Cvetič Non-perturbative effects in F- Theory Compactifications

Instantons in F-Theory  Euclidean D3 branes Theory at finite string coupling g s w/ no fundamental formulation  multi-pronged approaches Past: i) zero mode structure neutral (3-3) zero modes  monodromies in F-theory;anomaly inflow [M.C., I. Garcia-Etxebarria, R. Richter, ], [M.C., I. Garcia-Etxebarria, J. Halverson, ] charged (3-7) zero modes  string junctions [M.C., I. Garcia-Etxebarria, J. Halverson, ],… Recent/Current: ii) Superpotential via dualities & directly in F-theory

Focus on Pfaffians (7-brane moduli dependent prefactors): i) Via Heterotic Duality  Geometric interpretation of zero loci (including E 8 symmetric point) [M.C., I. Garcia-Etxebarria & J. Halverson, ] ii) Inclusion of fluxes & direct F-theory results [M.C., R. Donagi, J. Halverson & J. Marsano, UPR-1040-T, to appear]  ii) F-theory instanton superpotential Not much time iii) Effective Superpotential via N=2 D=3 M-theory [study of anomaly cancellation as a prerequisite] [ M.C., T. Grimm, J. Halverson & D. Klevers, work in progress]

D-instanton motivation: i) Important role in moduli stabilization [Strominger’86],…[Giddings,Kachru,Polchinski’01],… [Kachru,Kallosh,Linde,Trivedi’03],… [Balasubramanian, Berglund, Conlon, Quevedo’05],… ii) ii) New types of D-instantons: generate certain perturbatively absent couplings for charged sector matter [Blumenhagen, M.C., Weigand, hep-th/ ], [Ibañez, Uranga, hep-th/ ], - charges matter coupling corrections [Florea, Kachru,McGreevy,Saulina, hep-th/ ] -supersymmetry breaking Review: [Blumenhagen, M.C., Weigand, ] Encoded in non-perturbative violation of ``anomalous’’ U(1)’s

Illustrate:Type II(A)D-Instanton (geometric)- Euclidean D-brane D=9+1 D=3+1 1 X 6 -Calabi-Yau  M (1,3) -flat . New geometric hierarchies for couplings: stringy! Wraps cycle  p+1 cycles of X 6 point-in 3+1 space-time  p+1 Instanton can intersect with D-brane (charged ``λ’’ - zero modes)  q-3  generate non-perturbative couplings of charged matter....

… i) Local embeddings: Type II(A) original papers… F-theory [Heckman,Marasno,Schafer-Nameki,Saulina ] ii) Global embeddings: Type I [M.C., T.Weigand, , ] Type IIB [Blumenhagen,Braun,Grimm,Weigand, ] F-theory [M.C., I. Garcia-Etxebarria, J. Halverson, ] New algorithm [Blumenhagen, Jurke, Rahn, Roschy, ] Specific examples of instanton induced charged matter couplings: i) Majorana neutrino masses original papers… ii) Nonpert. Dirac neutrino masses [M.C., Langacker, ] iii) GUT coupling in SU(5) GUT’s [Blumenhagen, M.C. Lüst, Richter, Weigand, ] iv) Polonyi-type couplings [Aharony, Kachru,Silverstein, ],[M.C. Weigand, , ], [Heckman, Marsano, Sauline, Schäfer-Nameki, Vafa, ]

F-theory Compactification Vafa’96.. Revival: geometric features of particle physics w/ intersecting branes & exceptional gauge symmetries common in the heterotic string -- at finite string coupling g s (Semi-) local &(limited) global SU(5) GUT’s: chiral matter& Yukawa couplings (co-dim two (and three) singularities on the GUT 7-brane)… [Donagi, Wijnholt’08’11’12],[Beasley, Heckman, Vafa’08],… [Marsano,Schäfer-Nameki,Saulina’08’10’11],[Marsano Schäfer-Nameki’11], [Blumehagen,Grimm,Jurke,Weigand’09], [M.C., Garcia-Etxebarria,Halverson, ],… [Grimm,Weigand’10], [Grimm,Hayashi’11]; [Krause,Mayrhofer,Weigand’11’12],… [Esole,Yau’11],… [Cecotti,Cordova,Heckman,Vafa’10],… Geometry of F-theory: Elliptically fibered Calabi-Yau fourfold Y 4 ; complexified g s encoded in T 2 fibration over the base B 3 Gauge Symmetry: where fiber degenerates (say for T 2 pA+qB cycle) a co-dim 1 singularity signified a location (p,q) 7-branes in the base B 3 Matter: Intersecting 7-branes at co-dim 2 singularities G 4 -flux needed (for chirality)

(p,q) 7-brane base B 3 "Hidden” 7-brane T 2 fiber ED3-instanton Charged (3-7) zero modes Neutral (3,3) zero modes Cartoon of F-theory compactification (Y 4 as T 2 over B 3 ) Instanton: Euclidean D3 brane (ED3) wrapping divisor in B 3

Instantons in F-theory Related recent works focus on G 4 -fluxes and U(1)’s [ Past Work: [Witten’96], [Donagi,Grassi,Witten’96], [Katz,Vafa’96], [Ganor’96],…, [Diaconescu,Gukov’98],… Recent Work: [Blumenhagen, Collinucci, Jurke’10], [M.C., García-Etxebarria, Halverson’10,’11], [Donagi, Wijnholt’11], [Grimm, Kerstan, Palti, Weigand’11], [Marsano, Saulina, Schäfer-Nameki’11], [Bianchi,Collinucci, Martucci’11], [Kerstan, Weigand’12]

Non-pert. Superpotential for moduli stabiliz. due to ED3 wrapping divisor D in B 3, in the presence of (E 6 ) GUT 7-brane wrapping B 2 w/local structure captured by intersection curve Σ & flux G 4 there T 2 B2-GUT D-ED3 Σ-curve B3B3 Key upshots: i) Conjecture how to compute Pfaffian A (7-brane moduli dependent prefactor) ii) Explicit F-theory examples; analyse substructure, such as points of E 8 enhancement

F-theory ED3-instanton via duality (brief): Heterotic F-theory M-theory Σ ΣΣ P1P1 P1P1 Shrink elliptic fiber w/ fixed compl. str. M5 with a leg in the fiber (vertical divisor) * Digression

* Digression: F-theory via D=3, N=2 M-theory compactification [Grimm, Hayashi’11], [Grimm,Klevers’12] Analyze 4D F-theory in D=3, N=2 supergravity on Coulomb branch F-theory on X 4 x S 1 = M-theory on X 4 Matching of two effective theories possible only at 1-loop 1-loop in F-theory (by integrating out massive matter) = classical supergravity terms in M-theory [Aharony,Hanany,Intriligator, Seiberg,Strassler’97] [M.C.,Grimm,Klevers, to appear] c.f., Klevers gong show talk! (M-theory/supergravity) [MC,Grimm,Halverson,Klevers, in preparation] (F-theory)

F-theory ED3-instanton via duality: Heterotic F-theory M-theory Σ ΣΣ P1P1 P1P1 Y 4 ellipt. fibered over B 3 with B 3 : P 1 over B 2 Flux G 4  (C F,N)-spectral cover data ED3 wraps P1 over Σ Fermionic ``λ’’ (3-7) modes Shrink elliptic fiber w/ fixed compl. str. M5 with a leg in the fiber (vertical divisor) X 3 ellipt. fibered over B 2 Vector bundle V  (C Het,L)-spectral cover data Worldsheet inst. wraps Σ in B 2 Fermionic left-moving zero modes

Instanton data in F-theory: ED3 on divisor D in the presence of (E 6 ) GUT divisor by gauge theory on R (3,1) x B 2 data (G 4 info) specified by Higgs bundle  spectral cover data  study vector bundle cohomology on Σ  line bundle cohomology on curve = Spectral surface, line bundle (G 4 info) Defining equation of specified by moduli  7-brane moduli in the instanton world-volume

Computing Pffafian prefactor: Class of curve : elliptic fiber class section of w/ further algebraic data: Pfaffian determined via moduli dependence of cohomology (short exact Koszul sequence ) Analogous to heterotic computation [Buchbinder,Donagi,Ovrut’02,…,Curio’08,09,10] E 6 GUT

Non-trivial checks via duality: Heterotic: cohomology isomorphism via cylinder map when a dual exists Type IIB: gauge dependent data localized at instanton and 7-brane intersection  natural interpretation as (3-7) charged ``λ’’ modes M-theory: when a heterotic dual exists, Jac(c loc ) & IJac(M5) are deeply related [Further study…] without a dual?

W/ heterotic dual  cohomology on C loc isomorphic to cohomology on C Het [under the cylinder map [Donagi,Curio’98], the curves are the same]

Setting up the computation in F-theory: given B 3, find an ED3 divisor D and GUT divisor B 2 which intersect at a curve Σ (P 1 ) compute spectral cover data: and which satisfies D3 tadpole  Class of the spectral curve in & line bundle determined  compute Pffafian via Koszul exact sequence

Typical Pffafian prefactor structure: f i - polynomials in complex structure of 7-brane moduli restricted to instanton world-volume  depend on local subset of full moduli data [the same correction could arise in different compactifications]  interesting physics can determine the substructure of each f i (an example later)

Example: Pfaffian calculation directly in F-theory (without a dual) B 3 in terms of toric data (generalization of weighted projective spaces): GLSM charges (scaling weights) Divisor classes Stanley-Reisner ideal Holomorphic coord. E 6 GUT on B 2 = {z = 0} and ED3 instanton at D={x 1 =0} Y 4 defining equation: with sections b (0,2,3 ) in terms of compute:, & 

only subset of moduli b m in Pfaffian: using defining eq. for c loc to compute via Koszul exact sequence result:

Comments: beautiful factorization other examples (c.f., later) with substructure ubiquitous w/ E 8 enhancement often the physics governing the substructure  E 8 enhanced point in instanton world-volume! Sylverster matrix Phenomenological implications: in SU(5) GUTs, points of E 8 enhancement can give natural flavor structure, minimal gauge mediated supersymmetry breaking… [Heckman, Tavanfar, Vafa’10] Is this relation more general ?  quantified further (no time) [E 8 points can cause the Pfaffian to vanish even for SU(5) GUTs as a sublocus within the vanishing locus of the Pfaffian].

Calculation well-defined  Scanning across B 3 bases: Toric B 3 -from triangulations of 4308 d=3 polytopes (99%) of Kreuzer-Skarke d=3 list Comments: Many examples are identically zero  implic. for moduli stabil. Many examples are the points of E 8 Pfaffian Only 13 unique functions; high Pfaffian degeneracy E6E6 Spectral data:

Transition (32x32) matrix M for B 3 with (r=7 χ=1, M=6, N=-3) spectral data Pfaff=Det(M)

Conclusions: Moduli dependent instanton Pfaffian prefactors in F-theory: i) Conjecture: Pfaffian is computed in F-theory via line bundle cohomology on the spectral curve over the instanton-7brane intersection Checks: when heterotic dual exists, in Type IIB limit (M-theory-further study) ii) Pfaffian has a rich structure typically factorizes into non-trivial powers of moduli polynomials  points of E 8 enhancement can cause Pffafian to vanish; quantified conditions for when this occurs  physics implication