On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & with Krzysztof.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture I.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Twistors and Perturbative Gravity Emil Bjerrum-Bohr UK Theory Institute 20/12/05 Steve Bidder Harald Ita Warren Perkins +Zvi Bern (UCLA) and Kasper Risager.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
New Methods in Computational Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Higgs Symposium University of Edinburgh January.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Amplitudes et périodes­ 3-7 December 2012 Niels Emil Jannik Bjerrum-Bohr Niels Bohr International Academy, Niels Bohr Institute Amplitude relations in.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods for Precision Calculations for the LHC Princeton LHC Workshop, March 23, 2007 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren.
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
Recent Developments in Perturbative QCD Lance Dixon, SLAC DIS 2005 Madison, April 27, 2005.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
From Twistors to Calculations. 2 Precision Perturbative QCD Predictions of signals, signals+jets Predictions of backgrounds Measurement of luminosity.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Trees in N=8 SUGRA and Loops in N=4 SYM
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
On-Shell Meets Observation or, the Rubber Meets the Road
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Computation of Multi-Jet QCD Amplitudes at NLO
Presentation transcript:

On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September 7–12, 2013

Review of Lecture I

Three-Point Amplitudes Without a Lagrangian

Must act same way on three-point amplitude Suppose Then we have the three equations or

For more external legs, we can write down a few simple helicity amplitudes: Parke-Taylor equations Mangano, Xu, Parke (1986) Originally proven using the Berends–Giele recurrence relations (1988) Maximally helicity-violating or ‘MHV’

Color Decomposition With spinors in hand, we can rewrite our color decomposition formula

On-Shell Methods Kinematics: spinor variables Properties of amplitudes become calculational tools  Factorization → on-shell recursion ( Britto, Cachazo, Feng, Witten,… )  Unitarity → unitarity method ( Bern, Dixon, Dunbar, DAK,… )  Underlying field theory → integral basis

Factorization Properties of Amplitudes As sums of external momenta approach poles, amplitudes factorize More generally as

Factorization in Gauge Theories Tree level As but Sum over helicities of intermediate leg In massless theories beyond tree level, the situation is more complicated but at tree level it works in a standard way

What Happens in the Two-Particle Case?

This is a collinear limit Combine amplitude with propagator to get a non- vanishing object

Two-Particle Case Collinear limit: splitting amplitude

Example: Three-Particle Factorization Consider

BCFW On-Shell Recursion Relations Britto, Cachazo, Feng, Witten (2005)

Momenta are still on shell Momentum is still conserved

A Contour Integral Consider the contour integral Determine A(0) in terms of other residues

Using Factorization Other poles in z come from zeros of z-shifted propagator denominators Splits diagram into two parts with z-dependent momentum flow

On-Shell Recursion Relation =

Partition P: two or more cyclicly-consecutive momenta containing j, such that complementary set contains l, The recursion relations are then On shell

Number of terms ~ |l−j|  (n−3) so best to choose l and j nearby Complexity still exponential, because shift changes as we descend the recursion

Applications Very general: relies only on complex analysis + factorization Applied to gravity Bedford, Brandhuber, Spence, & Travaglini (2/2005); Cachazo & Svr č ek (2/2005) Massive amplitudes Badger, Glover, Khoze, Svr č ek (4/2005, 7/2005); Forde & DAK (7/2005) Other rational functions Bern, Bjerrum-Bohr, Dunbar, & Ita (7/2005) Connection to Cachazo–Svr č ek–Witten construction Risager (8/2005) CSW construction for gravity Bjerrum-Bohr, Dunbar, Ita, Perkins, & Risager (9/2005) Manifestly supersymmetric forms Brandhuber, Heslop, Travaglini; Arkani-Hamed, Cachazo, Kaplan (2008)

Four-Point Example

MHV Amplitudes

Prove Parke–Taylor equation by induction

Choosing Shift Momenta What are legitimate choices? Need to ensure that as At tree level, legitimate choices Power counting argument in Feynman diagrams for

Three-point vertices with z -dependent momentum flow ~ z Four-point vertices with z -dependent momentum flow ~ 1 Propagators with z -dependent momentum flow ~ 1/ z  Leading contributions from diagrams with only three- point vertices and propagators connecting j to l: ~ 1/ z (one more vertex than propagators & two εs)

On-Shell Methods Kinematics: spinor variables Properties of amplitudes become calculational tools  Factorization → on-shell recursion ( Britto, Cachazo, Feng, Witten)  Unitarity → unitarity method ( Bern, Dixon, Dunbar, DAK,… )  Basic Unitarity  Generalized Unitarity  Underlying field theory → integral basis

Unitarity Basic property of any quantum field theory: conservation of probability. In terms of the scattering matrix, In terms of the transfer matrix we get, or with the Feynman i 

Can imagine reconstructing dispersive (real) part via dispersion relations More generally, amplitudes are determined by their analytic structure Version 0 of unitarity

In Feynman Integrals Cutkosky rules (1960s) Each cut:

At one loop Lorentz-invariant phase-space measure

Problems Diagram-by-Diagram Massive particles: massless particles have divergences Absorptive (imaginary) parts only An amplitude has many channels; here we handle only one

Gedanken calculation Some diagrams are missing one or both propagators surrounding K 2 :  no contribution Also fate of “off-shell” terms

First Steps Compute tree amplitudes: using Berends–Giele recursion, BCFW, Grassmannians, etc. Form phase-space integral Promote it back to a loop integral This has the correct cut in the K 2 channel, not necessarily in other channels Do algebra to simplify numerator, and perform integral reductions

Problems Diagram-by-Diagram Massive particles: massless particles have divergences Absorptive (imaginary) parts only An amplitude has many channels; here we handle only one