M. Solzi, G. Porcari, F. Cugini DiFeST - Dipartimento di Fisica e Scienze della Terra Università di Parma, Italy Dynamic response of magnetocaloric materials.

Slides:



Advertisements
Similar presentations
MAGNETIC REFRIGERATION
Advertisements

Entropy and Second Law of Thermodynamics
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Temperature, Heat, and the First Law of Thermodynamics
© A. Kwasinski, 2014 ECE 2795 Microgrid Concepts and Distributed Generation Technologies Spring 2015 Week #3.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Chapter 10 Thermodynamics
Optical and electrical characterization of 4H-SiC detectors R. Schifano, A. Vinattieri INFM - Dipartimento di Fisica, Universita ’di Firenze ( Italy) S.
From microphotonics to nanophononics October 16th-28th Cargèse, France Elastic, thermodynamic and magnetic properties of nano-structured arrays impulsively.
- Lian Zhang Search for magnetic refrigerant materials WZI group meeting May 28 th 2003, UvA.
Università Cattolica del Sacro Cuore
The Advanced Chemical Engineering Thermodynamics The second law of thermodynamics Q&A_-5- 10/13/2005(5) Ji-Sheng Chang.
Magnetocaloric effects in intermetallic compounds
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
The Effect of Fuel Impact on Mixture Preparation in SI Engines with Port Fuel Injection António L. N. Moreira João Carvalho Miguel R. O. Panão IN+, Center.
Thermodynamics Part II. Remaining Topics Mechanisms of Heat Transfer Thermodynamic Systems and Their Surrounding Thermal Processes Laws of Thermodynamics.
Seminar on MAGNETIC REFRIGERATION Department of Mechanical engineering1 BY AGASTYA D.K. 4MC06ME004 Department of Mechanical engineering Malnad college.
Heat. Heat and Temperature Kinetic Molecular Theory – Is the theory that matter is made up of atoms (smallest piece of matter) and that these atoms are.
Moulay Youssef El Hafidi and Mohamed El Hafidi Laboratoire “Modélisation et Instrumentation” Faculté des sciences Ben M’sik - Département de Physique Université.
Study on the Magnetocaloric Materials and Room Temperature Magnetic Refrigerator Introduction Conclusions Theory Simulation Room Temperature Magnetic Refrigerator.
1/7 DIFFERENCE BETWEEN OPTICAL & THERMAL CAMERA 3 Second law of thermodynamics Clausius statement No process is possible whose sole result is the transfer.
FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Techniques for determination of deep level trap parameters in irradiated silicon detectors AUTHOR: Irena Dolenc ADVISOR: prof. dr. Vladimir Cindro.
THERMODYNAMICS Branch of science which deals with the processes involving heat and temperature inter conversion of heat and other forms of energy.
Chapter 15: Thermodynamics
Ni-Ti AND Ni-Mn-Ga NANOCRYSTALLINE SHAPE MEMORY ALLOYS AND COMPOSITES FOR NEXT GENERATION SENSORS AND ACTUATORS Teodor M. Breczko Lab of Functional Materials.
C. Giannetti 1 *, B. Revaz 2, F. Banfi 2, M. Montagnese 5, G. Ferrini 1, P. Vavassori 3, V. Metlushko 4 and F. Parmigiani 5,6 1 Dipartimento di Matematica.
Nanomaterials for Magnetic Refrigeration Stephanie L. Brock, Wayne State University, DMR Air conditioning and refrigeration is a part of daily.
BY : RAMAKANTH P JOSHI 1JS06ME034. Magnetocaloric effect Principle Prototype : Ames lab & astronaut corp America Advantages of magnetic refrigeration.
Section 1 Temperature and Heat. Kinetic Theory  All objects (even people) are made of particles and atoms that constantly and randomly move. All atoms.
Modeling thermoelectric properties of TI materials: a Landauer approach Jesse Maassen and Mark Lundstrom Network for Computational Nanotechnology, Electrical.
New developments in Energy Havesting: US-China collaboration on Magnetocaloric Effect Materials Joseph H. Ross Jr., Texas A&M University Main Campus, DMR.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Thermal contact Two systems are in thermal (diathermic) contact, if they can exchange energy without performing macroscopic work. This form of energy.
Complete analysis of STJ detector performance via absorption of phonon pulses M. Stokes, K. Wigmore, A. Kozorezov, Physics Department, Lancaster University,
Energy and the Environment Fall 2013 Instructor: Xiaodong Chu : Office Tel.:
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino 1, Maurizio De Rosa 2, Francesco.
Xkcd. Cryogenics Tyler Brewer Overview History of cryogenics Uses Methods of Cooling Materials Considerations Vibration Issues.
Temperature, Heat, and the First Law of Thermodynamics
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
WAMSDO-2013, New Techniques, GdR WAMSDO, January 2013 Gijs de Rijk CERN 1 NEW TECHNIQUES.
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
A Comparative Study of the Influence of First and Second Order Transitions on the Magnetocaloric Effect and Refrigerant Capacity in Half-doped Manganites.
a magnetic refrigeration stage
SEMINAR ON MAGNETIC REFRIGERATION PRESENTED BY seminartopics.info UNDER THE ABLE GUIDANCE OF seminartopics.info DEPARTMENT OF MECHANICAL ENGINEERING, seminartopics.info.
1 Second Law of Thermodynamics Engines and Refrigerators.
203/4c18:1 Chapter 18: The Second Law of Thermodynamics Directions of a thermodynamic process Reversible processes: Thermodynamic processes which can be.
Thermodynamics Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work.
Chapter 9 Heat.
Epitaxial films of tetragonal Mn 3 Ga: magnetism and microstructure F. Casoli 1,*, J. Karel 2, P. Lupo 3, L. Nasi 1, S. Fabbrici 1,4, L. Righi 1,5, F.
Magnetic Refrigeration (at room temperature)
Magnetic Refrigeration down to 1.6K for FCC_ee Jakub Tkaczuk Supported by: DRF Energy Program – DESA41K CERN FCC Collaboration Francois Millet, Jean-Marc.
MAGNETIC REFRIGERATION PRESENTED BY SHRADDHA DHAJEKAR MAGNETIC REFRIGERATION PRESENTED BY SHRADDHA DHAJEKAR UNDER THE ABLE GUIDANCE OF PROF. K. BHUYAR.
Bill Brey M.S. Graduate Student Mechanical Engineering Office: 1337 ERB Hometown: Grayslake, IL Thesis: Development.
Magnetic Refrigeration down to 1.6K for FCC_ee Jakub Tkaczuk Supported by: DRF Energy Program – DESA41K CERN FCC Collaboration.
Microgrid Concepts and Distributed Generation Technologies
Chapter 5 – Thermal Energy
110 1.
Solar collectors for water heating
National Institute of Standards and Technology
MAGNETIC REFRIGERATION
and Statistical Physics
The Laws of Thermodynamics
Lecture Objectives: Finish with Electric Energy Generation
Chapter 3 The 2nd law of thermodynamics
Heat Engines Entropy The Second Law of Thermodynamics
ECE699 – 004 Sensor Device Technology
Thermodynamics!.
Presentation transcript:

M. Solzi, G. Porcari, F. Cugini DiFeST - Dipartimento di Fisica e Scienze della Terra Università di Parma, Italy Dynamic response of magnetocaloric materials

DiFeST Università di Parma Energy and environment 2 General problem of energy conversion Refrigeration: food conservation, household appliances 25% of residential and 15% of commercial power consumption Constraints: Montreal (1987), Kyoto (1997) protocols Present technologies: vapour compression cycles with ozone depleting gases (CFCs, HCFCs) greenhouse gases (CFCs, HCFCs, HFC)

DiFeST Università di Parma A promising alternative: a green technology 3 Energy conversion (cooling) based on the magnetocaloric effect near RT: No harmful gases involved, low pressure Compactness (solid-state materials), low noise Better efficiency? Maybe 60% theor. limit «nearly-commercial» prototypes K. Engelbrecht, et al., Int. J. Refrig. 2012

DiFeST Università di Parma The MagnetoCaloric Effect 4 Heat absorbed Heat released Temperature, T Entropy, S S(HB)S(HB) S(HA)S(HA) H B >H A  T ad (T,  H) TB(HB)TB(HB) ST(T,H)ST(T,H) SB(HB)SB(HB) SA,TASA,TA TcTc MCE Temperature, T

DiFeST Università di Parma Magnetocaloric materials 5 «Classic» materials: Gd  reference Curie transition «Giant» MC materials: Magneto-structural Magneto-structural transitions 1 st -order transitions 1 st -order transitions Example of recent promising materials: |  T ad | (K) T c, T m (K) Gd LCSMO (1) MnFePSiB (5) LaFeSiH (4) Gd 5 Si 2 Ge 2 (3) NiMnIn-Co (2) Best reversible |  T ad | in 1 T (1)Ch. Bahl, et al., Appl. Phys. Lett (2)T. Gottschall, et al. Appl. Phys. Lett (3)L. von Moos, J. Phys. D Appl. Phys (4)J. Lyubina, Adv. Mater (5)F. Guillou, et al., J. Appl. Phys. 2014

DiFeST Università di Parma The end of the story? 6 Good materials and working devices: thus are we at the end of the story? No, there are many open questions: Materials: Hysteresis Hysteresis of 1 st order transitions Reproducibility Reproducibility of thermomagnetic properties Thermal conductivity, mechanical stability, … Devices: Lower efficiency and power/temperature span, higher costs  still promising but not imminent commercial applicability! J. Steven Brown, P.A. Domanski, Applied Thermal Engineering 64, 252 (2014)

DiFeST Università di Parma Characterization of the Magnetocaloric effect “conventional” techniques: Indirect Indirect:  S T (T,  H) from magnetization curves 7 Ni 45 Co 5 Mn 32 Ga 8 Measurement protocol: L. Caron, et al.,J. Magn. Magn. Mater. 321, 3559 (2009)

DiFeST Università di Parma Characterization of the Magnetocaloric effect “conventional” techniques: Indirect Indirect:  S T (T,  H) from magnetization curves  S T (T,  H) and  T ad (T,  H) from magnetic Differential Scanning Calorimetry 8 Model: S. Jeppesen, et al., Rev. Sci. Instrum. 79, (2008) V. Basso, et al., Rev. Sci. Instrum. 81, (2010)  0 H = 1.8 T  0 H = 0  0 H = 1.8 T  0 H = 0 Ni 45 Co 5 Mn 32 Ga 8

DiFeST Università di Parma Characterization of the Magnetocaloric effect “conventional” techniques: Indirect Indirect:  S T (T,  H) from magnetization curves  S T (T,  H) and  T ad (T,  H) from magnetic Differential Scanning Calorimetry Direct Direct:  T ad (T,  H) from adiabatic temperature change measurements 9 G. Porcari et al., Rev. Sci. Instrum., 84, (2013) Gd

DiFeST Università di Parma Characterization of the Magnetocaloric effect “conventional” techniques: Indirect Indirect:  S T (T,  H) from magnetization curves  S T (T,  H) and  T ad (T,  H) from magnetic Differential Scanning Calorimetry Direct Direct:  T ad (T,  H) from adiabatic temperature change measurements Reproducibility Reproducibility of meas. for different samples (1 st order transitions) mass, shape, micro-strains, composition … comparison Importance of comparison of different techniques 10 V. K. Pecharsky and K. A. Gschneidner, Jr, J. Appl. Phys., 90, 4614 (2001)

DiFeST Università di Parma Iso-thermal entropy change: comparison 11 G. Porcari et al., Phys. Rev. B, 86, (2012) Ni 45 Co 5 Mn 32 Ga 8

DiFeST Università di Parma Adiabatic temperature change: comparison G. Porcari et al., Phys. Rev. B, 86, (2012) G. Porcari et al., Phys. Rev. B, 85, (2012) 12  0 d H /d t = 2 T/s  0 d H /d t = 10  3 T/s Ni 45 Co 5 Mn 32 Ga 8

DiFeST Università di Parma Thermomagnetic cycles 13 operating (dynamic) conditions Study of MCE in operating (dynamic) conditions cycles Repeated thermomagnetic cycles G. Porcari, et al., Rev. Sci. Instrum. 84, (2013) Pneumatic linear actuator Two regions with controlled H and T

DiFeST Università di Parma Thermomagnetic cycles 14 G. Porcari, et al., Rev. Sci. Instrum. 84, (2013) Gd polycrystalline sample

DiFeST Università di Parma Time constant of temperature change 15 thermal conductivity Comparison of materials with different thermal conductivity: composites Different magnitude of the effect and different frequency LCMO - k= 1.3 Wm -1 K -1 LCMO-Ag filled – k= 2.2 Wm -1 K -1 G. Porcari, et al., Int. J. Refrig., in press (2015)

DiFeST Università di Parma Time constant of temperature change 16 Time decay Time decay of the adiabatic branch: time constant  Exponential best fit + average on hundreds of cycles Heat-transfer simulations (FEM) G. Porcari, et al., Int. J. Refrig., in press (2015)

DiFeST Università di Parma Time constant of temperature change 17 dynamic response  represents the dynamic response of a MC material Upper bound for max operating frequency microstructure Indirect information on the microstructure evolution with N. of cycles mechanical stability  thermal conductivity G. Porcari, et al., Int. J. Refrig., in press (2015) experimental FEM simulations

DiFeST Università di Parma Non-contact measurements techniques 18 non-contact techniques Direct methods for measuring  T ad based on non-contact techniques: nearly-ideal adiabatic conditions; thermomagnetic cycles at relatively high frequency (  10 Hz); samples with reduced thickness, like as thin sheets and ribbons (  thin films) Acoustic or optical detection of thermal radiation (low ac magnetic fields) A. O. Guimarães, et al., Phys. Rev. B 80, (2009) J. Döntgen, et al., Appl. Phys. Lett. 106, (2015)

DiFeST Università di Parma Non-contact techniques: an example 19 F. Cugini, et al., Rev. Sci. Instrum. 85, (2014)

DiFeST Università di Parma Non-contact techniques: experiments 20  0  H = 2 T Gd bulk F. Cugini, et al., Rev. Sci. Instrum. 85, (2014) Gd sheets Heat transfer simulations + experiments Validation

DiFeST Università di Parma Non-contact techniques: time scale of H change 21  magn (s) Thermopile limit F. Cugini, et al., Rev. Sci. Instrum. 85, (2014) Magnetic field time constant Detectable fraction of  T ad Gd sheets -  0  H = 1.0 T electromagnet switch on/off 100 %

Thermal lensing (mirage effect) 22

Non-contact techniques: thermal lensing 23 laser coil sample Pt100 heater detector Pulsed magnetic field F. Cugini, et al., submitted to Appl. Phys. Lett. (2015)

Non-contact techniques: thermal lensing 24 Fast response time: < ms agreement with usual techniques for measuring Δ T ad Bulk MnFeP 45 As 55 F. Cugini, et al., submitted to Appl. Phys. Lett. (2015)

DiFeST Università di Parma Conclusions 25 Comparison of different techniques for characterization of MC refrigerants Nearly operating conditions: repeated cycles Dynamic response: time constant of temperature change Non-contact measurements: high frequency – low mass materials Comparison of experimental data with heat transfer simulations

DiFeST Università di Parma Acknowledgments 26 F. Albertini, S. Fabbrici F. Albertini, S. Fabbrici Istituto IMEM-CNR, Parma, Italy E. Brück, L. Caron, F. Guillou, N.H. van Dijk E. Brück, L. Caron, F. Guillou, N.H. van Dijk FAME, Technical University of Delft (the Netherlands) L. Cohen, K. Morrison, J. Turcaud L. Cohen, K. Morrison, J. Turcaud Blackett Laboratory, Imperial College, London (UK) Loughborough University (UK) C. Felser C. Felser Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden (Germany)