1 Analysis of Variance (ANOVA) EPP 245/298 Statistical Analysis of Laboratory Data.

Slides:



Advertisements
Similar presentations
Lecture 10 F-tests in MLR (continued) Coefficients of Determination BMTRY 701 Biostatistical Methods II.
Advertisements

SPH 247 Statistical Analysis of Laboratory Data 1April 2, 2013SPH 247 Statistical Analysis of Laboratory Data.
SPH 247 Statistical Analysis of Laboratory Data April 2, 2010SPH 247 Statistical Analysis of Laboratory Data1.
ANOVA ANALYSIS Eighth-Grade Pupils in the Netherlands.
ANOVA: Analysis of Variation
Multiple Regression Predicting a response with multiple explanatory variables.
Zinc Data SPH 247 Statistical Analysis of Laboratory Data.
x y z The data as seen in R [1,] population city manager compensation [2,] [3,] [4,]
SPH 247 Statistical Analysis of Laboratory Data 1April 23, 2010SPH 247 Statistical Analysis of Laboratory Data.
1 Regression Homework Solutions EPP 245/298 Statistical Analysis of Laboratory Data.
Examining Relationship of Variables  Response (dependent) variable - measures the outcome of a study.  Explanatory (Independent) variable - explains.
1 Some R Basics EPP 245/298 Statistical Analysis of Laboratory Data.
Nemours Biomedical Research Statistics April 2, 2009 Tim Bunnell, Ph.D. & Jobayer Hossain, Ph.D. Nemours Bioinformatics Core Facility.
7/2/ Lecture 51 STATS 330: Lecture 5. 7/2/ Lecture 52 Tutorials  These will cover computing details  Held in basement floor tutorial lab,
1 Analysis of Variance (ANOVA) EPP 245 Statistical Analysis of Laboratory Data.
Crime? FBI records violent crime, z x y z [1,] [2,] [3,] [4,] [5,]
Some Analysis of Some Perch Catch Data 56 perch were caught in a freshwater lake in Finland Their weights, lengths, heights and widths were recorded It.
Analysis of Variance Introduction The Analysis of Variance is abbreviated as ANOVA The Analysis of Variance is abbreviated as ANOVA Used for hypothesis.
Multiple Regression Analysis. General Linear Models  This framework includes:  Linear Regression  Analysis of Variance (ANOVA)  Analysis of Covariance.
Regression Transformations for Normality and to Simplify Relationships U.S. Coal Mine Production – 2011 Source:
Checking Regression Model Assumptions NBA 2013/14 Player Heights and Weights.
How to plot x-y data and put statistics analysis on GLEON Fellowship Workshop January 14-18, 2013 Sunapee, NH Ari Santoso.
© Department of Statistics 2012 STATS 330 Lecture 18 Slide 1 Stats 330: Lecture 18.
BIOL 582 Lecture Set 19 Matrices, Matrix calculations, Linear models using linear algebra.
PCA Example Air pollution in 41 cities in the USA.
9/14/ Lecture 61 STATS 330: Lecture 6. 9/14/ Lecture 62 Inference for the Regression model Aim of today’s lecture: To discuss how we assess.
Analysis of Covariance Harry R. Erwin, PhD School of Computing and Technology University of Sunderland.
 Combines linear regression and ANOVA  Can be used to compare g treatments, after controlling for quantitative factor believed to be related to response.
7.1 - Motivation Motivation Correlation / Simple Linear Regression Correlation / Simple Linear Regression Extensions of Simple.
23-1 Analysis of Covariance (Chapter 16) A procedure for comparing treatment means that incorporates information on a quantitative explanatory variable,
Managerial Economics Demand Estimation. Scatter Diagram Regression Analysis.
Testing Multiple Means and the Analysis of Variance (§8.1, 8.2, 8.6) Situations where comparing more than two means is important. The approach to testing.
Use of Weighted Least Squares. In fitting models of the form y i = f(x i ) +  i i = 1………n, least squares is optimal under the condition  1 ……….  n.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 4b, February 20, 2015 Lab: regression, kNN and K- means results, interpreting and evaluating models.
Regression and Analysis Variance Linear Models in R.
Exercise 8.25 Stat 121 KJ Wang. Votes for Bush and Buchanan in all Florida Counties Palm Beach County (outlier)
Collaboration and Data Sharing What have I been doing that’s so bad, and how could it be better? August 1 st, 2010.
Lecture 9: ANOVA tables F-tests BMTRY 701 Biostatistical Methods II.
Regression Model Building LPGA Golf Performance
FACTORS AFFECTING HOUSING PRICES IN SYRACUSE Sample collected from Zillow in January, 2015 Urban Policy Class Exercise - Lecy.
Exercise 1 The standard deviation of measurements at low level for a method for detecting benzene in blood is 52 ng/L. What is the Critical Level if we.
Lecture 11 Multicollinearity BMTRY 701 Biostatistical Methods II.
Factorial Analysis of Variance
Tutorial 4 MBP 1010 Kevin Brown. Correlation Review Pearson’s correlation coefficient – Varies between – 1 (perfect negative linear correlation) and 1.
Lecture 7: Multiple Linear Regression Interpretation with different types of predictors BMTRY 701 Biostatistical Methods II.
Environmental Modeling Basic Testing Methods - Statistics III.
Lecture 6: Multiple Linear Regression Adjusted Variable Plots BMTRY 701 Biostatistical Methods II.
Determining Factors of GPA Natalie Arndt Allison Mucha MA /6/07.
Lecture 6: Multiple Linear Regression Adjusted Variable Plots BMTRY 701 Biostatistical Methods II.
Lecture 3 Linear Models II Olivier MISSA, Advanced Research Skills.
Linear Models Alan Lee Sample presentation for STATS 760.
Exercise 1 The standard deviation of measurements at low level for a method for detecting benzene in blood is 52 ng/L. What is the Critical Level if we.
Lecture 13 Diagnostics in MLR Added variable plots Identifying outliers Variance Inflation Factor BMTRY 701 Biostatistical Methods II.
EPP 245 Statistical Analysis of Laboratory Data 1April 23, 2010SPH 247 Statistical Analysis of Laboratory Data.
Tutorial 5 Thursday February 14 MBP 1010 Kevin Brown.
The Effect of Race on Wage by Region. To what extent were black males paid less than nonblack males in the same region with the same levels of education.
Nemours Biomedical Research Statistics April 9, 2009 Tim Bunnell, Ph.D. & Jobayer Hossain, Ph.D. Nemours Bioinformatics Core Facility.
1 Analysis of Variance (ANOVA) EPP 245/298 Statistical Analysis of Laboratory Data.
WSUG M AY 2012 EViews, S-Plus and R Damian Staszek Bristol Water.
EXCEL: Multiple Regression
Chapter 12 Simple Linear Regression and Correlation
Résolution de l’ex 1 p40 t=c(2:12);N=c(55,90,135,245,403,665,1100,1810,3000,4450,7350) T=data.frame(t,N,y=log(N));T; > T t N y
Correlation and regression
Console Editeur : myProg.R 1
Welcome to the class! set.seed(843) df <- tibble::data_frame(
Chapter 12 Simple Linear Regression and Correlation
Regression Transformations for Normality and to Simplify Relationships
Chapter 13 Group Differences
Obtaining the Regression Line in R
Analysis of Variance (ANOVA)
Presentation transcript:

1 Analysis of Variance (ANOVA) EPP 245/298 Statistical Analysis of Laboratory Data

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 2 The Basic Idea The analysis of variance is a way of testing whether observed differences between groups are too large to be explained by chance variation One-way ANOVA is used when there are k ≥ 2 groups for one factor, and no other quantitative variable or classification factor.

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 3 ABC

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 4 Data = Grand Mean + Row Deviations from grand mean + Cell Deviations from row mean Are the row deviations from the grand mean too big to be accounted for by the cell deviations from the row means?

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 5 > data(red.cell.folate) > help(red.cell.folate) > summary(red.cell.folate) folate ventilation Min. :206.0 N2O+O2,24h:8 1st Qu.:249.5 N2O+O2,op :9 Median :274.0 O2,24h :5 Mean : rd Qu.:305.5 Max. :392.0 > attach(red.cell.folate) > plot(folate ~ ventilation)

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 6 red.cell.folate package:ISwR R Documentation Red cell folate data Description: The 'folate' data frame has 22 rows and 2 columns. It contains data on red cell folate levels in patients receiving three different methods of ventilation during anesthesia. Format: This data frame contains the following columns: folate a numeric vector. Folate concentration ($mu$g/l). ventilation a factor with levels 'N2O+O2,24h': 50% nitrous oxide and 50% oxygen, continuously for 24~hours; 'N2O+O2,op': 50% nitrous oxide and 50% oxygen, only during operation; 'O2,24h': no nitrous oxide, but 35-50% oxygen for 24~hours.

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 7 > folate.lm <- lm(folate ~ ventilation) > summary(folate.lm) Call: lm(formula = folate ~ ventilation) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) e-14 *** ventilationN2O+O2,op * ventilationO2,24h Signif. codes: 0 `***' `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: on 19 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 2 and 19 DF, p-value:

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 8 > anova(folate.lm) Analysis of Variance Table Response: folate Df Sum Sq Mean Sq F value Pr(>F) ventilation * Residuals Signif. codes: 0 `***' `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 9 Two- and Multi-way ANOVA If there is more than one factor, the sum of squares can be decomposed according to each factor, and possibly according to interactions One can also have factors and quantitative variables in the same model (cf. analysis of covariance) All have similar interpretations

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 10 > data(heart.rate) > attach(heart.rate) > heart.rate hr subj time

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 11 > anova(hr.lm) Analysis of Variance Table Response: hr Df Sum Sq Mean Sq F value Pr(>F) subj e-16 *** time * Residuals Signif. codes: 0 `***' `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

October 27, 2004EPP 245 Statistical Analysis of Laboratory Data 12 Assignment for next week Do problems 6.1 and 6.2 in Dalgaard