Transport Model with Global Flow M. Yagi, M. Azumi 1, S.-I. Itoh, K. Itoh 2 and A. Fukuyama 3 Research Institute for Applied Mechanics, Kyushu University.

Slides:



Advertisements
Similar presentations
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Advertisements

Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
Glenn Bateman Lehigh University Physics Department
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
Two-dimensional Structure and Particle Pinch in a Tokamak H-mode
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
1 Global Gyrokinetic Simulations of Toroidal ETG Mode in Reversed Shear Tokamaks Y. Idomura, S. Tokuda, and Y. Kishimoto Y. Idomura 1), S. Tokuda 1), and.
Effect of sheared flows on neoclassical tearing modes A.Sen 1, D. Chandra 1, P. K. Kaw 1 M.P. Bora 2, S. Kruger 3, J. Ramos 4 1 Institute for Plasma Research,
GTC Status: Physics Capabilities & Recent Applications Y. Xiao for GTC team UC Irvine.
Non-disruptive MHD Dynamics in Inward-shifted LHD Configurations 1.Introduction 2.RMHD simulation 3.DNS of full 3D MHD 4. Summary MIURA, H., ICHIGUCHI,
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Intermittent Transport and Relaxation Oscillations of Nonlinear Reduced Models for Fusion Plasmas S. Hamaguchi, 1 K. Takeda, 2 A. Bierwage, 2 S. Tsurimaki,
Turbulent transport in collisionless plasmas: eddy mixing or wave-particle decorrelation? Z. Lin Y. Nishimura, I. Holod, W. L. Zhang, Y. Xiao, L. Chen.
Chalmers University of Technology The L-H transition on EAST Jan Weiland and C.S. Liu Chalmers University of Technoloy and EURATOM_VR Association, S
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Joaquim Loizu P. Ricci, F. Halpern, S. Jolliet, A. Mosetto
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
ASIPP On the observation of small scale turbulence on HT-7 tokamak* Tao Zhang**, Yadong Li, Shiyao Lin, Xiang Gao, Junyu Zhao, Qiang Xu Institute of Plasma.
Crosscutting Concepts Next Generation Science Standards.
SMK – ITPA1 Stanley M. Kaye Wayne Solomon PPPL, Princeton University ITPA Naka, Japan October 2007 Rotation & Momentum Confinement Studies in NSTX Supported.
Summary of MHD Topics 2nd IAEA Technical Meeting Theory of Plasma Instabilities Howard Wilson.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
Reconnection rates in Hall MHD and Collisionless plasmas
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
1 Non-neutral Plasma Shock HU Xiwei (胡希伟) 工 HU Xiwei (胡希伟) HE Yong (何勇) HE Yong (何勇) Hu Yemin (胡业民) Hu Yemin (胡业民) Huazhong University of Science and.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
Integrated Modeling for Burning Plasmas Workshop (W60) on “Burning Plasma Physics and Simulation 4-5 July 2005, University Campus, Tarragona, Spain Under.
(National Institute for Fusion Science, Japan)
Structure and Stability of Phase Transition Layers in the Interstellar Medium Tsuyoshi Inoue, Shu-ichiro Inutsuka & Hiroshi Koyama 1 12 Kyoto Univ. Kobe.
1/1318 th PSI conference – Toledo, May 2008P. Tamain Association EURATOM-CEA 3D modelling of edge parallel flow asymmetries P. Tamain ab, Ph. Ghendrih.
A discussion of tokamak transport through numerical visualization C.S. Chang.
Kinetic MHD Simulation in Tokamaks H. Naitou, J.-N. Leboeuf †, H. Nagahara, T. Kobayashi, M. Yagi ‡, T. Matsumoto*, S. Tokuda* Joint Meeting of US-Japan.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Microscopic Eddys don’t imply gyroBohm Scaling Scan device size while keeping all other dimensionless parameters fixed Turbulence eddy size remains small.
Session SA33A : Anomalous ionospheric conductances caused by plasma turbulence in high-latitude E-region electrojets Wednesday, December 15, :40PM.
Modelling the Neoclassical Tearing Mode
Summary on transport IAEA Technical Meeting, Trieste Italy Presented by A.G. Peeters.
Intermittent Oscillations Generated by ITG-driven Turbulence US-Japan JIFT Workshop December 15 th -17 th, 2003 Kyoto University Kazuo Takeda, Sadruddin.
9 th EU-US Transport Task Force Workshop, Córdoba, Spain, 9-12 September 2002Luca Garzotti1 Particle transport and density profile behaviour on JET L.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Y. Kishimoto 1,2), K. Miki 1), N. Miyato 2), J.Q.Li 1), J. Anderson 1) 21 st IAEA Fusion Energy Conference IAEA-CN-149-PD2 (Post deadline paper) October.
Neoclassical Effects in the Theory of Magnetic Islands: Neoclassical Tearing Modes and more A. Smolyakov* University of Saskatchewan, Saskatoon, Canada,
Simulations of turbulent plasma heating by powerful electron beams Timofeev I.V., Terekhov A.V.
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
Basic concepts of heat transfer
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory NSTX Physics.
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
Center for Plasma Edge Simulation
Influence of energetic ions on neoclassical tearing modes
Mikhail Z. Tokar and Mikhail Koltunov
Modelling the Neoclassical Tearing Mode
20th IAEA Fusion Energy Conference,
Integrated Modeling for Burning Plasmas
Edge plasma dynamics during L-H transition in the JFT-2M tokamak
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
Presentation transcript:

Transport Model with Global Flow M. Yagi, M. Azumi 1, S.-I. Itoh, K. Itoh 2 and A. Fukuyama 3 Research Institute for Applied Mechanics, Kyushu University 1 Japan Atomic Energy Research Institute 2 National Institute for Fusion Science 3 Kyoto University Acknowledgement: C. Z. Cheng and T. S. Hahm (PPPL) A. Smolyakov and A. Hirose (U. Saskatchewan) P. Diamond(UCSD) Y. Kishimoto (JAERI)

Background co-existence Scale Length Empirically, Macroscopic dynamics ~a Microscopic dynamics ~  i, ~  e, ~  e “Bohm” “Gyro-Bohm” “k~a -1 ”,”transient”,”non-local”,”non-diffusive” “k~  i -1 ”,”transport”,”local”,”diffusive” Symmetry 1D: electric field bifurcation, interface dynamics, etc. 3D: island (Nature of transport in high temperature plasmas) Statistics Deterministic Probabilistic (chaos, intermittency) Approaches: DNS(Direct Numerical Simulation), LES(Large Eddy Simulation) 2D: covective cell(zonal flow, streamer)

Categorization of Phenomena in Tokamak Plasmas Based on Scale Length (Wave Number) lower hierarchy

Why Transport-MHD Model ?

Transport-MHD Model BohmGyro Bohm

Analysis of Heat Pulse Propagation Based on RMHD Step (1): calculate saturation state energy from initial profile based on reduced MHD model Step(2): heating source is applied in the central region at saturation stage and analyze propagation of heat pulse

Time Evolution of Fluctuation Energy

Time Evolution of Pressure(Radial Profile)

Heat Pulse Propagation Diffusive Non Diffusive

Ballistic Heat Pulse Propagation Heat flux is not described by a simple form. Heat pinch appears as non-local nature. heat pinchnormal diffusion

Summary Transient transport is investigated based on Transport-MHD model Heat pulse propagates ballistically ( t > 350) ExB nonlinearity plays an important role for pulse propagation The results show that Diffusion approximation sometimes fails. More quantitative analysis based on the realistic model is under construction.

transport flow turbulence Hierarchical transport model with flow Interaction with turbulence gives

Transport Model (1) (2) (3) (4)

Parallel momentum balance and heat flow equation Ohm’s law(4) and parallel ion flows are generally described by Reduced model: eq.(4) and Ion flow does not appear in transport model in explicit form.

Application of Transport-MHD model Sawtooth triggered transition between ignited state to L-mode in ITER(interaction between thermal instability and MHD) The transport simulation with sawtooth model shows the thermal quench triggered by sawtooth. Transport simulation of ITER-like plasma Thermal quench

Control of NTM The linear stability depends on the model. 4-field RMHD model including ion neoclassical viscosity shows combined effect with ion neoclassical viscosity and both ion and electron diamagnetic effect is crucial to stabilize NTM. These effects are not fully taken into account of the conventional Rutherford model.