5.1 – Modeling Data with Quadratic Functions. QUADRATICS - - what are they? Important Details o c is y-intercept o a determines shape and position if.

Slides:



Advertisements
Similar presentations
5.1 Modeling Data with Quadratic Functions
Advertisements

5.1 Modeling Data with Quadratic Functions. Quadratic Function: f(x) = ax 2 + bx + c a cannot = 0.
6.1/6.2/6.6/6.7 Graphing , Solving, Analyzing Parabolas
Algebra II w/ trig 4.1 Quadratic Functions and Transformations
Math 426 FUNCTIONS QUADRATIC.
Graphing Quadratic Functions
Quadratic Functions.
Quadratic Functions Review / Warm up. f(x) = ax^2 + bx + c. In this form when: a>0 graph opens up a 0 Graph has 2 x-intercepts.
Solving Quadratic Equation by Graphing Section 6.1.
And the Quadratic Equation……
9.2 Key Features of a Parabola
Solving Quadratic Equation by Graphing
Monday, 5/10Tuesday, 5/11Wednesday, 5/12Thursday, 5/13Friday, 5/14 Graphing & Properties of Quadratic Functions HW#1 Graphing & Properties of Quadratic.
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
9.4 Graphing Quadratics Three Forms
Graphing Quadratic Functions Graph quadratic functions of the form f ( x ) = ax 2. 2.Graph quadratic functions of the form f ( x ) = ax 2 + k. 3.Graph.
Graphs of Quadratic Functions
Definitions 4/23/2017 Quadratic Equation in standard form is viewed as, ax2 + bx + c = 0, where a ≠ 0 Parabola is a u-shaped graph.
The Graph of f (x) = ax 2 All quadratic functions have graphs similar to y = x 2. Such curves are called parabolas. They are U-shaped and symmetric with.
Graphing Quadratic Equations Standard Form & Vertex Form.
Solving Quadratic Equations by Graphing Quadratic Equation y = ax 2 + bx + c ax 2 is the quadratic term. bx is the linear term. c is the constant term.
Solving Quadratic Equations
Section 2.4 Analyzing Graphs of Quadratic Functions.
2.3 Quadratic Functions. A quadratic function is a function of the form:
Characteristics of Quadratics
Vertex & axis of Symmetry I can calculate vertex and axis of symmetry from an equation.
SWBAT…analyze the characteristics of the graphs of quadratic functions Wed, 2/15 Agenda 1. WU (10 min) 2. Characteristics of quadratic equations (35 min)
4.1 Graph Quadratic Functions in Standard Form
SWBAT…analyze the characteristics of the graphs of quadratic functions Wed, 2/15 Agenda 1. WU (10 min) 2. Characteristics of quadratic equations (35 min)
Graphs of Quadratic Functions Graph the function. Compare the graph with the graph of Example 1.
Section 3.1 Review General Form: f(x) = ax 2 + bx + c How the numbers work: Using the General.
QUADRATIC FUNCTIONS IN STANDARD FORM 4.1B. Review  A quadratic function can be written in the form y = ax 2 + bx + c.  The graph is a smooth curve called.
Chapter 5.2/Day 3 Solving Quadratic Functions by Graphing Target Goal: 1. Solve quadratic equations by graphing.
Graphs of Quadratics Let’s start by graphing the parent quadratic function y = x 2.
9-3 Graphing y = ax + bx + c 2 1a. y = x - 1 for -3
Section 8.7 More About Quadratic Function Graphs  Completing the Square  Finding Intercepts 8.71.
Quadratic Functions Solving by Graphing Quadratic Function Standard Form: f(x) = ax 2 + bx + c.
Precalculus Section 1.7 Define and graph quadratic functions
1.7 Graphing Quadratic Functions. 1. Find the x-intercept(s). The x-intercepts occur when Solve by: Factoring Completing the Square Quadratic Formula.
Lesson: Objectives: 5.1 Solving Quadratic Equations - Graphing  DESCRIBE the Elements of the GRAPH of a Quadratic Equation  DETERMINE a Standard Approach.
WARM-UP: Graphing Using a Table x y = 3x  2 y -2 y = 3(-2)  2 -8 y = 3(-1)  y = 3(0)  y = 3(1)  y = 3(2)  2 4 GRAPH. y = 3x 
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
How does the value of a affect the graphs?
Solving Quadratic Equation by Graphing Students will be able to graph quadratic functions.
5.3 Translating Parabolas. GRAPHING Vertex Form y = a(x-h)² + k We still look for the same things in vertex form: HAPPY or SAD ? 2Where is the VERTEX.
Bellwork  Identify the domain and range of the following quadratic functions
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Key Components for Graphing a Quadratic Function.
GRAPH QUADRATIC FUNCTIONS. FIND AND INTERPRET THE MAXIMUM AND MINIMUM VALUES OF A QUADRATIC FUNCTION. 5.1 Graphing Quadratic Functions.
10.3 Solving Quadratic Equations – Solving Quadratic Eq. Goals / “I can…”  Solve quadratic equations by graphing  Solve quadratic equations using.
Lesson 27 Connecting the parabola with the quadratic function.
Solving Quadratic Equations by Graphing Need Graph Paper!!! Objective: 1)To write functions in quadratic form 2)To graph quadratic functions 3)To solve.
Characteristics of Quadratic functions f(x)= ax 2 + bx + c f(x) = a (x – h) 2 + k.
Solving Quadratic Equation by Graphing
Introduction to Quadratics
Algebra I Section 9.3 Graph Quadratic Functions
Solving Quadratic Equation and Graphing
Solving Quadratic Equation by Graphing
Solving a Quadratic Equation by Graphing
Quadratic Functions Unit 9 Lesson 2.
5.1 Modeling Data with Quadratic Functions
Solving Quadratic Equation by Graphing
Find the x-coordinate of the vertex
Solving Quadratic Equation by Graphing
Solving Quadratic Equation by Graphing
Solving Quadratic Equation
Chapter 10 Final Exam Review
Bell Work Draw a smile Draw a frown Draw something symmetrical.
Solving Quadratic Equations by Graphing
Quadratic Functions and Modeling
Presentation transcript:

5.1 – Modeling Data with Quadratic Functions

QUADRATICS - - what are they? Important Details o c is y-intercept o a determines shape and position if a > 0, then opens up if a < 0, then opens down o Vertex: x-coordinate is at –b/2a FORM _______________________ Y = ax² + bx + c Quadratic term Linear term Constant

Parts of a parabola This is the y-intercept, c It is where the parabola crosses the y-axis This is the vertex, V This is the called the axis of symmetry, a.o.s. Here a.o.s. is the line x = 2 These are the roots Roots are also called: -zeros -solutions - x-intercepts

STEPS FOR GRAPHING Y = ax² + bx +c 1HAPPY or SAD ? 2VERTEX = ( -b / 2a, f(-b / 2a) ) 3T- Chart 4Axis of Symmetry

GRAPHING - - Standard Form (y = ax² + bx + c) y = x² + 6x + 8 1) It is happy because a>0 2) FIND VERTEX (-b/2a) a =1 b=6c=8 So x = -6 / 2(1) = -3 Then y = (-3)² + 6(-3) + 8 = -1 So V = (-3, -1) 3) T-CHART X Y = x² + 6x y = (-2)² + 6(-2) + 8 = 0 0 y = (0)² + 6(0) + 8 = 8 Why -2 and 0? Pick x values where the graph will cross an axiw The graph will be symmetric al. Once you have half the graph, the other two points come from the mirror of the first set of points.

GRAPHING - - Standard Form (y = ax² + bx + c) y = -x² + 4x - 5 1) It is sad because a<0 2) FIND VERTEX (-b/2a) a =-1 b=4c=-5 So x = - 4 / 2(-1) = 2 Then y = -(2)² + 4(2) – 5 = -1 So V = (2, -1) 3) T-CHART X Y = -x² + 4x - 5 1y = -(1)² + 4(1) - 5 = -2 0y = -(0)² + 4(0) – 5 = -5 Here we only have one point where the graph will cross an axis. Choose one other point (preferably between the vertex and the intersection point) to graph.