Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–6) Then/Now New Vocabulary Key Concept: Function Example 1:Identify Functions Example 2:Draw.

Slides:



Advertisements
Similar presentations
Algebra 4-6 Functions Functions
Advertisements

Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–1) Then/Now New Vocabulary Theorem 8.4: Pythagorean Theorem Proof: Pythagorean Theorem Example.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–4) Then/Now Example 1:Expressions with Absolute Value Key Concept: Absolute Value Equations.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–5) CCSS Then/Now Key Concept: Proportional Relationship Example 1:Real-World Example: Proportional.
Splash Screen.
Splash Screen. Then/Now I CAN use rate of change to solve problems and find the slope of a line. Note Card 3-3A Define Rate of Change and copy the Key.
Splash Screen. Then/Now I CAN solve radical equations. Learning Target.
Splash Screen. Vocabulary function discrete function continuous function vertical line test non linear function.
Splash Screen.
4-1: Relations and Functions
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–5) Then/Now New Vocabulary Example 1:Representations of a Relation Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–1) Then/Now New Vocabulary Example 1:Describe an Arithmetic Sequence Example 2: Find a Term.
Lesson 3-1 Representing Relations Lesson 3-2 Representing Functions
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 4–6) CCSS Then/Now New Vocabulary Key Concept: Inverse Relations Example 1: Inverse Relations.
Then/Now You recognized arithmetic sequences and related them to linear functions. (Lesson 3–5) Write an equation for a proportional relationship. Write.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–2) NGSSS Then/Now Theorem 8.8: 45°-45°-90° Triangle Theorem Example 1:Find the Hypotenuse.
Then/Now You found rates of change and slopes. (Lesson 3–3) Write and graph linear equations in slope-intercept from. Model real-world data with equations.
LESSON 1–7 Functions. Lesson Menu Five-Minute Check (over Lesson 1–6) TEKS Then/Now New Vocabulary Key Concept: Function Example 1:Identify Functions.
Over Chapter 7 A.A B.B C.C D.D 5-Minute Check 6 A.26 B.52 C.78 D.156 The circle graph shows the results of a middle school survey about favorite lunch.
Splash Screen. Lesson Menu Five-Minute Check Then/Now New Vocabulary Key Concept: Real Numbers Example 1:Use Set-Builder Notation Example 2:Use Interval.
1.7 FUNCTIONS CCSS Content Standards F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 6–5) Then/Now New Vocabulary Key Concept: Remainder Theorem Example 1:Synthetic Substitution.
Splash Screen. Over Lesson 1–5 A.A B.B C.C D.D 5-Minute Check 1 Which expression can be used to represent fourteen less than twice the width? A.14 – 2.
Welcome to Interactive Chalkboard Algebra 1 Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION.
Splash Screen. Concept 1 Example 1 Domain and Range State the domain and range of the relation. Then determine whether the relation is a function. If.
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) CCSS Then/Now New Vocabulary Key Concept: Functions Example 1:Domain and Range Key Concept:
Splash Screen. Concept Example 1 Simplify Expressions A. Simplify the expression. Assume that no variable equals 0. Original expression Definition.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 9–7) Then/Now New Vocabulary Key Concept: Quadratic Function Example 1:Graph Quadratic Functions.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–3) Then/Now New Vocabulary Example 1: Solve a Logarithmic Equation Key Concept: Property of.
Lesson 3 Menu Five-Minute Check (over Lesson 10-2) Main Ideas and Vocabulary Targeted TEKS Example 1: Variable in Radical Example 2: Radical Equation with.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 6–4) Then/Now New Vocabulary Key Concept: Property of Proportions Example 1: Solve Proportions.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–6) CCSS Then/Now New Vocabulary Key Concept: Function Example 1:Identify Functions Example.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–2) CCSS Then/Now New Vocabulary Key Concept: Rate of Change Example 1: Real-World Example:
Over Lesson 6–3 A.A B.B C.C D.D 5-Minute Check 6 I drive to Philly, a 300 mile trip, in 6 hours. What is my unit rate of speed, in simplest form. Bob wants.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–2) Then/Now New Vocabulary Example 1:Constant Rate of Change Example 2:Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 4Five-Minute Check (over Chapter 4) CCSS Then/Now New Vocabulary Concept Summary: Properties.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–3) Then/Now New Vocabulary Key Concept:Slope-Intercept Form Example 1:Write an Equation in.
Splash Screen. Lesson Menu Five-Minute Check Then/Now New Vocabulary Key Concept: Real Numbers Example 1:Use Set-Builder Notation Example 2:Use Interval.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–1) Then/Now New Vocabulary Example 1:Identify Linear Functions Example 2:Real-World Example:
LESSON 1–7 Functions. Over Lesson 1–6 5-Minute Check 1 Express the relation {(–1, 0), (2, –4), (–3, 1), (4, –3)} in a mapping diagram.
Concept 1. Example 1 Identify Functions A. Determine whether the relation is a function. Explain. Answer: This is a function because the mapping shows.
Then/Now You solved equation with elements from a replacement set. (Lesson 1–5) Determine whether a relation is a function. Find function values.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 3–2) CCSS Then/Now New Vocabulary Key Concept: Rate of Change Example 1: Real-World Example:
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 1) Then/Now New Vocabulary Key Concept: Functions Example 1:Domain and Range Key Concept: Vertical.
Over Lesson 3–2 5-Minute Check 5 A.264 B.222 C.153 D.134 The equation P = 3000 – 22.5n represents the amount of profit P a catering company earns depending.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–6) CCSS Then/Now New Vocabulary Key Concept: Function Example 1:Identify Functions Example.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 1–3) Then/Now New Vocabulary Key Concept: Absolute Value Example 1:Evaluate an Expression with.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–2) Then/Now Theorem 8.8: 45°-45°-90° Triangle Theorem Example 1:Find the Hypotenuse Length.
Over Lesson 1–4 A.A B.B C.C D.D 5-Minute Check 1 A.V B.P C.Q D.R E.T F.S G.U Name the coordinates of the following points (1, 3) (2, 5) (3, 2) (4, 3) (6,
Splash Screen. Over Lesson 1–6 5-Minute Check 1 Which expresses the relation {(–1, 0), (2, –4), (–3, 1), (4, –3)} correctly? A.B. C.
Functions 4-6 I can determine whether a relation is a function and find function values. S. Calahan 2008.
Introduction to Functions Honors Math – Grade 8. KEY CONCEPT Function A function is a relation in which each element of the domain is paired with exactly.
Lesson 4-6 Relations. Transparency 6 Click the mouse button or press the Space Bar to display the answers.
Splash Screen.
Test Chapter 1 TENTATIVELY scheduled for Wednesday, 9/21.
Splash Screen.
Functions (1-7) Objective: Determine whether a relation is a function. Find function values.
1-7 functions Goals: Identify a function. Find function values.
1-7 Notes for Algebra 1 Functions.
Lesson 1-7 Glencoe Algebra 1 FUNCTIONS Lesson 1-7 Glencoe Algebra 1.
Proportional and Non-Proportional Relationships
Splash Screen.
Splash Screen.
Algebra 4-6 Functions Functions
Warm ups Which expresses the relation {(–1, 0), (2, –4), (–3, 1), (4, –3)} correctly? A. B. C.
Splash Screen.
Splash Screen.
1-7 functions Goals: Identify a function. Find function values.
Splash Screen.
Splash Screen.
Presentation transcript:

Splash Screen

Lesson Menu Five-Minute Check (over Lesson 1–6) Then/Now New Vocabulary Key Concept: Function Example 1:Identify Functions Example 2:Draw Graphs Example 3:Equations as Functions Concept Summary: Representations of a Function Example 4:Function Values Example 5:Nonlinear Function Values

Over Lesson 1–6 5-Minute Check 1 A.A B.B C.C Which expresses the relation {(–1, 0), (2, –4), (–3, 1), (4, –3)} correctly? A.B. C.

Over Lesson 1–6 5-Minute Check 3 A.A B.B C.C billstips $10$1.25 $8$1.50 $4$2 A.B.C. Jason, a waiter, expressed his customers’ bills and the tips they left him as the relation {(10, 2), (8, 1.5), (4, 1.25)}. Which table correctly expresses the relation? billstips $10$2 $8$1.50 $4$1.25 billstips $10$4 $8$2 $4$1

Over Lesson 1–6 A.A B.B C.C D.D 5-Minute Check 3 A.ℓ = d + 8 B.8 – ℓ = d C.ℓ = 8d D.8ℓ = d A student earns $8 for every lawn he mows. Which equation shows the relationship between the number of lawns mowed ℓ and the wages earned d?

Then/Now You solved equation with elements from a replacement set. (Lesson 1–5) Determine whether a relation is a function. Find function values.

Vocabulary function discrete function continuous function vertical line test non linear function

Concept 1

Example 1 Identify Functions A. Determine whether the relation is a function. Explain. Answer: This is a function because the mapping shows each element of the domain paired with exactly one member of the range. DomainRange

Example 1 Identify Functions B. Determine whether the relation is a function. Explain. Answer: This table represents a function because the table shows each element of the domain paired with exactly one element of the range.

A.A B.B C.C D.D Example 1 A. Is this relation a function? Explain. A.Yes; for each element of the domain, there is only one corresponding element in the range. B.Yes; because it can be represented by a mapping. C.No; because it has negative x-values. D.No; because both –2 and 2 are in the range.

A.A B.B C.C D.D Example 1 B. Is this relation a function? Explain. A.No; because the element 3 in the domain is paired with both 2 and –1 in the range. B.No; because there are negative values in the range. C.Yes; because it is a line when graphed. D.Yes; because it can be represented in a chart.

Example 2 Draw Graphs A. SCHOOL CAFETERIA There are three lunch periods at a school. During the first period, 352 students eat. During the second period, 304 students eat. During the third period, 391 students eat. Make a table showing the number of students for each of the three lunch periods. Answer:

Example 2 Draw Graphs B. Determine the domain and range of the function. Answer: D: {1, 2, 3}; R: {352, 304, 391}

Example 2 Draw Graphs C. Write the data as a set of ordered pairs. Then draw the graph. The ordered pairs can be determined from the table. The period is the independent variable and the number of students is the dependent variable. Answer: The ordered pairs are {1, 352}, {2, 304}, and {3, 391}.

Example 2 Draw Graphs Answer:

Example 2 Draw Graphs D. State whether the function is discrete or continuous. Explain your reasoning. Answer:Because the points are not connected, the function is discrete.

A.A B.B C.C D.D Example 2 At a car dealership, a salesman worked for three days. On the first day he sold 5 cars. On the second day he sold 3 cars. On the third he sold 8 cars. Make a table showing the number of cars sold for each day. A. B. C. D.

Example 3 Equations as Functions Determine whether x = –2 is a function. Graph the equation. Since the graph is in the form Ax + By = C, the graph of the equation will be a line. Place your pencil at the left of the graph to represent a vertical line. Slowly move the pencil to the right across the graph. At x = –2 this vertical line passes through more than one point on the graph. Answer: The graph does not pass the vertical line test. Thus, the line does not represent a function.

A.A B.B C.C Example 3 Determine whether 3x + 2y = 12 is a function. A.yes B.no C.not enough information

Concept 2

Example 4 Function Values A. If f(x) = 3x – 4, find f(4). f(4)=3(4) – 4Replace x with 4. =12 – 4Multiply. = 8Subtract. Answer:f(4) = 8

Example 4 Function Values B. If f(x) = 3x – 4, find f(–5). f(–5)=3(–5) – 4Replace x with –5. =–15 – 4Multiply. = –19Subtract. Answer:f(–5) = –19

A.A B.B C.C D.D Example 4 A.8 B.7 C.6 D.11 A. If f(x) = 2x + 5, find f(3).

A.A B.B C.C D.D Example 4 A.–3 B.–11 C.21 D.–16 B. If f(x) = 2x + 5, find f(–8).

Example 5 Nonlinear Function Values A. If h(t) = 1248 – 160t + 16t 2, find h(3). h(3)=1248 – 160(3) + 16(3) 2 Replace t with 3. =1248 – Multiply. = 912Simplify. Answer:h(3) = 912

Example 5 Nonlinear Function Values B. If h(t) = 1248 – 160t + 16t 2, find h(2z). h(2z)=1248 – 160(2z) + 16(2z) 2 Replace t with 2z. =1248 – 320z + 64z 2 Multiply. Answer:h(2z) = 1248 – 320z + 64z 2

A.A B.B C.C D.D Example 5 A. Find the value h(2). The function h(t) = 180 – 16t 2 represents the height of a ball thrown from a cliff that is 180 feet above the ground. A.164 ft B.116 ft C.180 ft D.16 ft

A.A B.B C.C D.D Example 5 A. Find the value h(3z). The function h(t) = 180 – 16t 2 represents the height of a ball thrown from a cliff that is 180 feet above the ground. A.180 – 16z 2 ft B.180 ft C.36 ft D.180 – 144z 2 ft

End of the Lesson