A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.

Slides:



Advertisements
Similar presentations
OBSERVATIONS OF AGNs USING PACT (Pachmarhi Array of Cherenkov Telescopes) Debanjan Bose (On behalf of PACT collaboration) “The Multi-Messenger Approach.
Advertisements

Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
The HEROES Balloon- borne Hard X-ray Telescope Colleen A. Wilson-Hodge, J. Gaskin, S. Christe, A. Shih, K. Kilaru, D.A. Swartz, A. F. Tennant, B. Ramsey.
Detection of Gamma-Rays and Energetic Particles
Gamma-Ray Astronomy Call no Assoc. Prof. Markus Böttcher Clippinger # 339 Phone:
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
S. Aoki Kobe University OPERA Emulsion Workshop 2006/12/09 Gamma-ray Telescope.
A Visit to Ghost Ranch Jim Linnemann Michigan State University & Los Alamos National Laboratory June 18, 2003.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
High Energy Detection. High Energy Spectrum High energy EM radiation:  (nm)E (eV) Soft x-rays X-rays K Soft gamma rays M Hard gamma.
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
2009/11/12KEK Theory Center Cosmophysics Group Workshop High energy resolution GeV gamma-ray detector Neutralino annihilation GeV S.Osone.
High-Energy Astrophysics
Problems associated with Earth based observation Optical band = stars and planets and nebulae. Infrared band = low energy heat sources. Radio band = dust.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
R&T télescope APC1INFIERI meeting – 15 juillet 2014 DSSD detectors development for a space Compton telescope P. Laurent, Y. Dolgorouky, M. Khalil,
Introduction to gamma-ray astronomy GLAST-Large Area Telescope Introduction to GLAST Science New way of studying astrophysics Schedule of GLAST project.
Jacques Paul Soft Gamma-Ray Astronomy 23 January 2001 Rencontres de Moriond Les Arcs Expected Impact on VHE Phenomena Panorama in the Coming Years INTEGRAL.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
11 th iWoRiD, Prague, Czech Republic Low-power Wide-dynamic-range Readout System for a 64-channel Multi-anode PMT of a Scintillation Gamma Camera Satoru.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Real-time Imaging of prompt gammas in proton therapy using improved Electron Tracking Compton Camera (ETCC)  TP C Pixel Scintillator Arrays (PSA) RI reagent.
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Interaction of Cosmic-Rays with the Solar System Bodies as seen by Fermi LAT Monica Brigida Bari University For the Fermi LAT Collaboration.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
K. Miuchi K. Miuchi July 10, 2008 Dark Matter and Dark Energy Direction-Sensitive Dark Matter Search --NEWAGE-- Kentaro Miuchi (Kyoto University) (New.
Hard X-ray Polarimeter for Small Satellite Design, Feasibility Study, and Ground Experiments K. Hayashida (Osaka University), T. Mihara (RIKEN), S. Gunji,
1 Caltech Jan High Energy Gamma Astronomy Patrick Fleury (Ecole Polytechnique ) LIGO-G R.
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
8 th Aug 2009 ANL User Workshop Towards Nuclear Spectroscopy using a Position Sensitive Avalanche Photo Diode S. Lakshmi University of Massachusetts Lowell.
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
Polarization Characteristic of Multi-layer Mirror for Hard X-ray Observation of Astrophysical Objects T. Mizuno 1, J. Katsuta 2, H. Yoshida 1, H. Takahashi.
MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Development of an Electron-Tracking Compton Camera using CF 4 gas at high pressure for improved detection efficiency Michiaki Takahashi N. Higashi, S.
Goddard February 2003 R.Bellazzini - INFN Pisa A new X-Ray Polarimeter based on the photoelectric effect for Black Holes and Neutron Stars Astrophysics.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Development of an Electron-Tracking Compton Camera with a Gaseous TPC and a Scintillation Camera for a Balloon-borne experiment (SMILE) Kazuki Ueno, Toru.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
PoGO_collimator_ ppt1 Study of PoGO background dependence on the collimator material/slow scintillator threshold April 21, 2004 Tsunefumi Mizuno.
Exploring an evidence of supermassive black hole binaries in AGN with MAXI Naoki Isobe (RIKEN, ) and the MAXI
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
PoGO_G4_ ppt1 Study of optimized fast scintillator length for the astronomical hard X- ray/soft gamma-ray polarimeter PoGO November 1, 2004 Tsunefumi.
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
PoGO_G4_ ppt1 Study of BGO/Collimator Optimization for PoGO August 8th, 2005 Tsunefumi Mizuno, Hiroshima University/SLAC
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
Observation of Pulsars and Plerions with MAGIC
Detector R&D in KAPAC Outline Compton Camera SOI detector
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
Presentation transcript:

A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC

~30 objects/10 years V. Schönfelder+ (A&AS, 2000) MeV sky map CGRO/COMPTEL ~3000 objects/4 years F. Acero+ (ApJS, 2015) Fermi/LAT > 1 GeV GeV sky map Sensitivity Astro-H 1mCrab EGRET Air Cherenkov Fermi Good Bad erg / (cm 2 sec) Obs. Time : 10 6 sec 1-30 MeV goal Requirements for the next-generation detectors are … Wide-band detection Large Field of View Sharp Point Spread Function Nucleosynthesis SNR : Radio-isotopes Galactic plane : 26 Al ・ Annihilation Particle acceleration Jet (AGN) : Synchrotron + Inverse Compton Strong gravitational potential Black hole : accretion disk,  0 Etc. Gamma-ray Pulsar, solar flare

 1 photon  direction + energy  Well-define PSF  Large FOV (~3str)  Simple structure  Compton Kinematical test with angle   Particle identify with dE/dx  No VETO & shield around ETCC  Gaseous TPC : Tracker track and energy of recoil electron  Scintillator : Absorber position and energy of scattered gamma ray Reconstruct Compton scattering event by event stopped scattered ~4 cm 30 cm without electron tracks Using electron tracks T. Tanimori+, ApJ (2015) α 137 Cs (662 keV) x 3

Micro Pixel Chamber (  -PIC) 2D gaseous imaging detector by Print Circuit Board technology Each pixel works as like a proportional counter Large detection area : 10×10 cm 2 and 30×30 cm 2 High gas gain : max ~15000 Fine position resolution : RMS ~120 μm Good gain uniformity Stable operation over several months with the gain of ~  m

Garfield++ Experiments: □ : SN ▲ : SN Ar 90% + Ethane 10%  Strong electric field near anodes -> Avalanche occurs only near anodes  Single electron spectrum -> well fit by Polya-distribution  Gas gain -> Experiment data are well consistent with simulation. anode cathode by Garfield++ A. Takada+, JINST (2013)

55 Fe 10cm  10cm Test chart image 0.5mm slits Xe:C 2 H 6 = 7:3 Gain uniformity(  ) 4.5% FWHM 30% MnK  Ar-esc Length along the edge [mm] Counts Knife edge test position resolution σ=120  m 10cm 5.9keV T. Nagayoshi+, NIM A (2004), A. Takeda+, IEEE TNS (2004) Gas gain

Sub-MeV gamma-ray imaging Loaded-on-balloon Experiment ETCC Launched on Sep. 1, Sanriku (ISAS/JAXA) Test flight using (10 cm) 3 ETCC Measure diffuse cosmic and atmospheric gamma ray 0.1 – 1 35 km, 3 hours Measured : 420 events Simulation : ~400 events (cosmic + atmospheric) A. Takada+, ApJ, 733(2011), 13 Diffuse Cosmic  SMILE-I Compton kinematic test and Particle identify provided low-background observation.

30 cm cube tracker×√10 Updating of data acquisition system×√10 Improvement of imaging ability×10 Target: Crab nebula 5  detection (40 km, several hours) Effective area : > 0.5 cm 2 (300 keV) Angular resolution : < 10˚ (600 keV) Sensitivity : ×100 SMILE-I Requirements time threshold Time-Over-Threshold (TOT) stopped scattered TOT Obtained recoil electron ~1 m Improvements for SMILE-II Sensitivity will reach to (×100 SMILE-I) ! ~4 cm SMILE-II Compton e Escape e MIPs time strip

~10 min/frame 835 keV±10% 30˚ 60˚ 120˚ Zenith ~0˚ 120˚ 60˚ Zenith ~90˚ Zenith ~60˚ 120˚ 60˚ Zenith ~30˚ 60˚ 120˚ 60° 30° ~2m No energy-cut 662 keV 511 keV 356 keV 22 Na 133 Ba 0.85 MBq 137 Cs 22 Na 0.16 MBq 133 Ba 0.63 MBq

~ 5.5 m SMILE-II ETCC 22 Na shielded by thin Pb 27 kBq equivalent No cut very week 511 keV on source (4 o radius) dE/dx & Fiducial cut off source 15 o 30 o 45 o 60 o 511 keV±10% ~ 15 ph/s 22 Na T. Tanimori+, ApJ 2015 Dose by RI : ~ uSv/h Space dose : uSv/h ⇒ Source = 1/ BG By imaging spectroscopy, ETCC can detect a very weak source without any shield ! ―

Neutron imaging Resolution with PID: 105~130 µm(σ) J. D. Parker+, NIM A (2013) Dark matter search  3 He + n -> p + 3 H  Using template of ToT, we obtain neutron incident position  Dark-matter scatters the nuclear of detector.  Because a TPC can detect the angle θ between directions od DM-wind and recoil nuclear, we can detect the DM-wind by measurement of asymmetry of cos θ. K. Miuchi+, PhL B (2007), K. Nakamura+, PTEP (2015)  NID NEWAGE

Requirements from applications: 1.Higher gas gain 2.Suppression of discharge 3.Higher position resolution  Thick substrate  Precise manufacturing  Fine pitch PCB technology : Thicker substrate causes thicker anode Precision of manufacturing is ~10  m Minimum of anode diameter is 50  m -> Pixel pitch is limited by anode Micro Electro Mechanical Systems MEMS technology can make deep through-hole keeping anode diameter Precision of manufacturing is a few  m

Experiment: ● MEMS  -PIC ▲ PCB  -PIC Garfield++ (PCB) Garfield++ (MEMS) 21.2 % (FWHM)  MEMS  -PIC successfully detected X-ray.  Large gain with stable operation : (no discharge during 20 hours) (no discharge over 300 hours)  Good energy resolution : 5.89 keV (FWHM)  Discharge rate of MEMS  -PIC is less than that of PCB  -PIC. Performance of test production improved those of current detectors. MEMS  -PIC may become a next standard.

 Performance of PCB  -PIC : - Large Detection area10x10, 30x30 cm 2 - High gas gain~6000 (stable operation), (max) - Energy 5.89 keV (FWHM) - Fine position resolution~120  m (RMS) - Good gain uniformity< 5-7% (RMS, 100 cm 2 )  Applications of  -PIC : - Electron-Tracking Compton Camera MeV gamma-ray astronomy, Medical imaging, Environmental monitoring - Neutron Imaging - Dark matter search  Development of MEMS  -PIC : - High gas gain~22000 during 20 hours - Stable operation~15000 over 300 hours Discharge rate is less than that of PCB type - Good energy 5.89 keV (FWHM)