@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.

Slides:



Advertisements
Similar presentations
Congestion Control and Fairness Models Nick Feamster CS 4251 Computer Networking II Spring 2008.
Advertisements

Principles of Congestion Control Chapter 3.6 Computer Networking: A top-down approach.
1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A note on the use.
3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 11.
1 TCP Congestion Control. 2 TCP Segment Structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement.
CS640: Introduction to Computer Networks Mozafar Bag-Mohammadi Lecture 3 TCP Congestion Control.
Introduction 1 Lecture 14 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Introduction to Congestion Control
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 12.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
1 Congestion Control 2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
The Future r Homework questions> r The next test is coming the 19 th (just before turkey day!) r Wednesday = review + anything not done today r Friday.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Data Communication and Networks
Transport Layer3-1 Data Communication and Networks Lecture 8 Congestion Control October 28, 2004.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Announcement r Homework 2 in tonight m Will be graded and sent back before Th. class r Midterm next Tu. in class m Review session next.
3: Transport Layer3b-1 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer 4 2: Transport Layer 4.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_3.
Chapter 3 Transport Layer
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
1 Transport Layer Lecture 10 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
These slides are adapted from Kurose and Ross
By N.Gopinath AP/CSE Unit: III Introduction to Transport layer.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
1 John Magee 20 February 2014 CS 280: Transport Layer: Congestion Control Concepts, TCP Congestion Control Most slides adapted from Kurose and Ross, Computer.
CS-1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#09 & 10 Instructor: Engr. Muhammad Mateen Yaqoob.
TCP. TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
CS640: Introduction to Computer Networks Aditya Akella Lecture 15 TCP Congestion Control.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Transport Layer session 1 TELE3118: Network Technologies Week 11: Transport Layer TCP Some slides have been taken from: r Computer Networking:
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
CS-1652 Jack Lange University of Pittsburgh
Chapter 3 outline 3.1 Transport-layer services
Chapter 3-3 TCP Congestion CTL *
Flow and Congestion Control
October 1st, 2013 CS-1652 Jack Lange University of Pittsburgh
TCP Overview.
Chapter 3 outline 3.1 Transport-layer services
CS-1652 Congestion Control Jack Lange University of Pittsburgh
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 Transport Layer
October 4th, 2011 CS-1652 Jack Lange University of Pittsburgh
Presentation transcript:

@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the book “Computer Networking, A Top-Down Approach” All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CS 283Computer Networks Spring 2012 Instructor: Yuan Xue

@Yuan Xue Transport Layer Outline Overview 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 UDP: Connectionless transport 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP Demultiplexing segment structure reliable data transfer flow control connection management Congestion control 3.6 Principles of congestion control 3.7 TCP congestion control

@Yuan Xue Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: lost packets (buffer overflow at routers) long delays (queueing in router buffers) a top-10 problem!

@Yuan Xue Rate Allocation Problem two senders, two receivers one router, infinite buffers no retransmission unlimited shared output link buffers Host A in : original data Host B out What should be the sending rate from Host A and Host B? What will happen if A/B sends faster than this rate? How should A/B finds out? 10Mbps

@Yuan Xue Scenario 1 two senders, two receivers one router, infinite buffers no retransmission What should be the sending rate from Host A and Host B? C/2 What will happen if A/B sends faster than this rate? Delay (depending on traffic pattern) unlimited shared output link buffers Host A in : original data Host B out

@Yuan Xue Scenario 2 one router, finite buffers sender retransmission of lost packet finite shared output link buffers Host A in : original data Host B ou t ' in : original data, plus retransmitted data

@Yuan Xue Causes/costs of congestion: scenario 2 a) always: (goodput) b) “perfect” retransmission only when loss: 3) retransmission of delayed (not lost) packet makes larger (than perfect case) for same in out = in out > in out “costs” of congestion: r more work (retrans) for given “goodput” r unneeded retransmissions: link carries multiple copies of pkt R/2 in out b. R/2 in out a. R/2 in out c. R/4 R/3

@Yuan Xue Scenario 3 four senders  Fairness multihop paths finite shared output link buffers Host A in : original data Host B out ' in : original data, plus retransmitted data

@Yuan Xue Utility Model Utility Function Degree of satisfaction Flow with rate utility function Assumptions Increasing Continuously differentiable Strictly concave Aggregated Utility Social welfare

@Yuan Xue Optimization Objective Maximize aggregated utility Different fairness models  Proportional fairness  Max-min fairness Optimal resource utilization … 

@Yuan Xue Optimization Problem of Resource Allocation/Congestion Control Optimization Objective Optimal resource allocation Optimization Constraint Resource constraint Putting things together

@Yuan Xue Causes/costs of congestion: scenario 3 another “cost” of congestion: r when packet dropped, any “upstream transmission capacity used for that packet was wasted! HostAHostA HostBHostB o u t

@Yuan Xue Approaches towards congestion control end-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP network-assisted congestion control: routers provide feedback to end systems single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at two broad approaches towards congestion control: