TCAD Simulation for SOI Pixel Detectors October 31, 2006 Hirokazu Hayashi, Hirotaka Komatsubara (Oki Elec. Ind. Co.), Masashi Hazumi (KEK) for the SOIPIX.

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Study of Behaviour of Silicon Sensor Structures, Before and After Irradiation Y. Unno, S. Mitusi, Y. Ikegami, S. Terada (KEK) O. Jinnouchi, R. Nagai (Tokyo.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Belle-II Meeting Nov Nov Thomas Bergauer (HEPHY Vienna) Status of DSSD Sensors.
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
VLSI Digital System Design
Progress of SOI Pixel Detectors Sep. 9, Yasuo Arai, KEK 1.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft KIT, Institut für Prozessdatenverarbeitung.
TRAPPISTE Tracking Particles for Physics Instrumentation in SOI Technology Prof. Eduardo Cortina, Lawrence Soung Yee Institut de recherche en mathématique.
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
SOI Pixel Detector : Present Status & Future Plans Super Belle Collb. Mtg Dec. 11, 2008 Yasuo Arai (KEK)
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
8/22/01Marina Artuso - Pixel Sensor Meeting - Aug Sensor R&D at Syracuse University Marina Artuso Chaouki Boulahouache Brian Gantz Paul Gelling.
Charge collection studies on heavily diodes from RD50 multiplication run (update) G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Study of Behaviour of n-in-p Silicon Sensor Structures Before and After Irradiation Y. Unno, S. Mitsui, Y. Ikegami, S. Terada, K. Nakamura (KEK), O. Jinnouchi,
TCAD Simulation for SOI Pixel Detector
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
Qualitative Discussion of MOS Transistors. Big Picture ES230 – Diodes – BJT – Op-Amps ES330 – Applications of Op-Amps – CMOS Analog applications Digital.
RD50 participation in HV-CMOS submissions G. Casse University of Liverpool V. Fadeyev Santa Cruz Institute for Particle Physics Santa Cruz, USA HV-CMOS.
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
SOI pixel detector technology US-Japan collaboration Farah Khalid on behalf of ASIC Development Group SOIPIX collaboration people involved in SOIPIX: G.Deptuch,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Effect of Metal Overhang on Electric Field for Pixel Sensors Kavita Lalwani, Geetika Jain, Ranjeet Dalal, Kirti Ranjan & Ashutosh Bhardwaj Department of.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Foundry Characteristics
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Silicon detector processing and technology: Part II
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Low Resistance Strip Sensors – RD50 Common Project – RD50/ CNM (Barcelona), SCIPP (Santa Cruz), IFIC (Valencia) Contact person: Miguel Ullán.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
XYZ 1/7/2016 MIT Lincoln Laboratory APS-2 Diode Simulation First Look V. Suntharalingam 27 July 2007.
Y.Unno, 4th Workshop on Advanced Silicon Radiation Detectors, Trento, Italy, Feb., Development of Radiation- tolerant p-type Silicon Microstrip.
Ljubljiana, 29/02/2012 G.-F. Dalla Betta Surface effects in double-sided silicon 3D sensors fabricated at FBK at FBK Gian-Franco Dalla Betta a, M. Povoli.
Evaluation of novel n + -in-p pixel and strip sensors for very high radiation environment Y. Unno a, S. Mitsui a, R. Hori a, R. Nagai g, O. Jinnouchi g,
Maria Rita Coluccia Simon Kwan Fermi National Accelerator Laboratory
Lehman Review April 2000 D. Bortoletto 1 Forward Pixel Sensors Daniela Bortoletto Purdue University US CMS DOE/NSF Review April 12,2000 Progress.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
R. Bradford 10 December, 2014 Sensor Details. Explanation Submitted some designs that will be included on the Novati/Tezzaron submission. Designs based.
Summary of Simulations from KIT Robert Eber, Martin Printz.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
FBK 3D CMS pixel sensors preliminary lab measurements E. Alagoz 1, A. Krzywda 1, D. Bortoletto 1, I. Shipsey 1, G. Bolla 1, and G. F. Dalla Betta 2, M.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
Claudio Piemonte Firenze, oct RESMDD 04 Simulation, design, and manufacturing tests of single-type column 3D silicon detectors Claudio Piemonte.
How to design a good sensor? General sensor desing rules Avoid high electric fields Provide good interstrip isolation (high Rint) Avoid signal coupling.
Infrared Laser Test System Silicon Diode Testing 29 May 2007 Fadmar Osmić Contents: Setup modifications new amplifier (Agilent MSA-0886) new pulse generator.
Latest news on 3D detectors IRST CNM IceMos. CNM 2 wafers fabricated Double side processing with holes not all the way through, (aka Irst) n-type bulk.
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
Pixel Meeting Nov 7, Status Update on Sensors and 3D Introduction Laser Annealed HPK sensors MIT-LL thinned sensors SOI devices –OKI –ASI 3D assembly.
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Performance test of the SOI pixel detector Hideki MIYAKE (Osaka University) for SOIPIX group Hideki MIYAKE (Osaka University) for SOIPIX group Oct.31,
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Zheng Li, 96th LHCC open session, 19th November 2008, CERN RD39 Status Report 2008 Zheng Li and Jaakko Härkönen Full author list available at
Development of N-in-P Silicon Strip and Pixel sensors for very high radiation environments Y. Unno For the Collaboration of KEK, Univ. Tsukuba and Hamamatsu.
Rint Simulations & Comparison with Measurements
Available detectors in Liverpool
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Sensor Wafer: Final Layout
Front-end circuit with deep-submicron FD-SOI Hirokazu Ikeda ikeda
Enhanced Lateral Drift (ELAD) sensors
On this basis, a new geometry with silicon short strip sensors (strixels) is proposed. In order to understand the behaviour of such devices, test geometries.
Presentation transcript:

TCAD Simulation for SOI Pixel Detectors October 31, 2006 Hirokazu Hayashi, Hirotaka Komatsubara (Oki Elec. Ind. Co.), Masashi Hazumi (KEK) for the SOIPIX group

2006/10/31M. Hazumi (KEK)2 Financial Support by KEK Detector Technology Project SOIPIX collaborators KEK Detector Technology Project : [SOIPIX Group] Y. Arai *, Y. Ikegami, H. Ushiroda, Y. Unno, O. Tajima, T. Tsuboyama, S. Terada, M. Hazumi, H. Ikeda A, K. Hara B, H. Ishino C, T. Kawasaki D, H. Miyake E, G. Varner F, E. Martin F, H. Tajima G, M. Ohno H, K. Fukuda H, H. Hayashi H, H. Komatsubara H, J. Ida H KEK 、 JAXA A, U. Tsukuba B, TIT C, Niigata U. D, Osaka U. E, U. Hawaii F, SLAC G, OKI Elec. Ind. Co. H (*)—contact person Y. Arai *, Y. Ikegami, H. Ushiroda, Y. Unno, O. Tajima, T. Tsuboyama, S. Terada, M. Hazumi, H. Ikeda A, K. Hara B, H. Ishino C, T. Kawasaki D, H. Miyake E, G. Varner F, E. Martin F, H. Tajima G, M. Ohno H, K. Fukuda H, H. Hayashi H, H. Komatsubara H, J. Ida H KEK 、 JAXA A, U. Tsukuba B, TIT C, Niigata U. D, Osaka U. E, U. Hawaii F, SLAC G, OKI Elec. Ind. Co. H (*)—contact person

2006/10/31M. Hazumi (KEK)3 Outline TCAD OverviewTCAD Overview Breakdown voltageBreakdown voltage Effect of bias voltage on readout electronicsEffect of bias voltage on readout electronics P-substrate optionP-substrate option SummarySummary

2006/10/31M. Hazumi (KEK)4 TCAD Overview

2006/10/31M. Hazumi (KEK)5 What ’ s TCAD ? TCAD = Technology Computer Aided DesignTCAD = Technology Computer Aided Design –Process simulation –Device simulation Finer design rule  more complicated processes, longer development timeFiner design rule  more complicated processes, longer development time TCAD can reduce development time drastically and is necessary for semiconductor manufacturing todayTCAD can reduce development time drastically and is necessary for semiconductor manufacturing today Why not for detector R&D !Why not for detector R&D ! LSI Manufacturing LSI Manufacturing RealVirtual Specifications Function design Logic design Circuit design Layout design Mask fabrication Device production Prototyping Process data Characterization Device data TCAD Process simulation Process simulation Device simulation Device simulation ~3mon. 

2006/10/31M. Hazumi (KEK)6 TCAD tools used in this talk Silvaco TCADSilvaco TCAD AHTENA ( Process simulation ) : 2D simulationAHTENA ( Process simulation ) : 2D simulation ATLAS ( Device simulation): 2D or 3D simulationATLAS ( Device simulation): 2D or 3D simulation ENEXSS (Environment for NExt Simulation System)ENEXSS (Environment for NExt Simulation System) Developed by Selete (Semiconductor Leading Edge Technologies, )Developed by Selete (Semiconductor Leading Edge Technologies, ) Full 3D process/device simulation !Full 3D process/device simulation ! ENEXSS example) 3D device simulation for SOI gate drain BOX SOI NMOS  particle injection source source current

2006/10/31M. Hazumi (KEK) 7 Diode TEG simulation (unit:  m)

2006/10/31M. Hazumi (KEK) 8 Diode TEG simulation baskside fixed at 0V Center (N+) Bulk (N-) Guard (P+) N-substrate P+ > 0  current (unit:  m)

2006/10/31M. Hazumi (KEK) 9 Diode TEG simulation Measurements

2006/10/31M. Hazumi (KEK)10 TCAD for SOIPIX R&D Handle wafer (i.e. sensor) simulationHandle wafer (i.e. sensor) simulation –Pixel and guard ring design optimization Breakdown voltageBreakdown voltage Charge collectionCharge collection –Problem finding/solving before fabrication Effect of bias voltage on readout electronicsEffect of bias voltage on readout electronics –I/O pads –p-stops for P-substrate option Handle wafer (i.e. sensor) simulationHandle wafer (i.e. sensor) simulation –Pixel and guard ring design optimization Breakdown voltageBreakdown voltage Charge collectionCharge collection –Problem finding/solving before fabrication Effect of bias voltage on readout electronicsEffect of bias voltage on readout electronics –I/O pads –p-stops for P-substrate option Useful to obtain  field maps  device characteristics  signals induced by particles

2006/10/31M. Hazumi (KEK)11 Breakdown voltage Results of measurements are reported by H. Miyake: Breakdown voltage ~ 100V at bias-ring edges.

2006/10/31M. Hazumi (KEK)12 Breakdown voltage simulation ENEXSS 3D process/device simulation simulated depth = 130  m ~-92V

2006/10/31M. Hazumi (KEK)13 Electric field simulation at V bias = -92V

2006/10/31M. Hazumi (KEK)14 Breakdown voltage simulation with different configurations  Improvements for the next submission ** Simulation with smaller pixels: lower breakdown voltages than the previous case 90  120  135  150   45V  65V  70V  100V

2006/10/31M. Hazumi (KEK)15 Effect of bias voltage on readout electronics

2006/10/31M. Hazumi (KEK)16 Back gate effect Backbias should be less than ~8V; otherwise always ON.Backbias should be less than ~8V; otherwise always ON. Problem specific to Monolithic detectorsProblem specific to Monolithic detectors –readout electronics very close to sensors Can we reproduce it with TCAD ?Can we reproduce it with TCAD ? ON Threshold variation (measurements) Back Gate Substrate voltage acts as Back Gate, and changes transistor threshold.

2006/10/31M. Hazumi (KEK) 17 Problem Finding with Device Simulation Measurements reproduced With backbias > 8V, NMOS becomes always ON. Substrate voltage under Tr should be kept low. backbias supplied here NMOS handle wafer BOX V B (V) Threshold voltage (V) Backbias (V) ENEXSS TCAD

2006/10/31M. Hazumi (KEK)18 P+ implantation to reduce back gate effect Weakest part: I/O buffer

2006/10/31M. Hazumi (KEK)19 P+ implantation to reduce back gate effect Additional p+ implantation (with voltage fixed at 0V or with some “ anti-bias ” ) should help reduce the back gate effect. How close should they be to the I/O pads ?

2006/10/31M. Hazumi (KEK)20 Simulation setup Bulk: N- (~700ohm cm, 6 x cm -3 ) BOX NMOS (5  m wide P+, 1 x cm -3 ) distance (80, 5, 2  m) Gate threshold voltage at Id= w/L*1e-7 A measured with Vd=1V Backbias (0-20 V) 350  m Should we perform 3D simulation ? Comparison made; results don ’ t show big difference. 2D ~ 10 min., 3D~3days !  choose 2D for this study

2006/10/31M. Hazumi (KEK)21 Threshold voltage vs. Bias voltage Large improvement in case of distance = 2  m Vth > 0.25V at VB = 100V ! V_B = 0~20 V 80  m 5  m 2  m distance

2006/10/31M. Hazumi (KEK)22 P-substrate option

2006/10/31M. Hazumi (KEK) 23 p substrate (1.5k ohm) n+ pixel p+ stop n+ guard ring

2006/10/31M. Hazumi (KEK)24 Backgate problem on pixel readout electronics Device simulation  p-stop voltage  0 SOIPIX readout electronics very close to p-stops may suffer from this “backbias”. p-stops ATHENA/ATLAS TCAD

2006/10/31M. Hazumi (KEK) 25 Interface charge (qf) qf = 1e13/cm 2 V(p-stop) = -23.5V n+ pixels qf = 0 V(p-stop) = -45V qf = 3e11/cm 2 V(p-stop) = -27.5V Effect depends on irradiation.

2006/10/31M. Hazumi (KEK) 26 P-stop optimization V(p-stop) [V] V(p-p) [V]Max. Efield (10 5 V/cm) (1 small pixel in 1 cell) p-stops Best result Cf. 1/1/1 must be even better (common) Vbias = -500V for 250  m thick p-bulk smaller |Vbias| sufficient for thinner detector

2006/10/31M. Hazumi (KEK) 27 Pixel configuration  Which is better to avoid microdischarge ?  Which makes the p-stop potential closer to 0 ? 1 small pixel in 1 cell 4 small pixels in 1 cell 20  m (octagon for actual design) 1 large pixel in 1 cell  no difference is seen for qf=1e13/cm 2

2006/10/31M. Hazumi (KEK) 28 Choice of pixel design 4 n+ octagons in one pixel individual p-stops p-stop as thin as possible (1  m) p-stop distance as close as possible (1-2  m) 4 n+ octagons in one pixel individual p-stops p-stop as thin as possible (1  m) p-stop distance as close as possible (1-2  m)

2006/10/31M. Hazumi (KEK)29 Summary Handle wafer (i.e. sensor) simulationHandle wafer (i.e. sensor) simulation –Pixel and guard ring design optimization Breakdown voltage well understood and new designs proposedBreakdown voltage well understood and new designs proposed –Problem finding/solving before fabrication Effect of bias voltage on readout electronicsEffect of bias voltage on readout electronics –New P+ bias rings proposed for I/O pads –P-substrate option seems more complicated because of p-stops TCAD is very useful for SOIPIX R&D !TCAD is very useful for SOIPIX R&D !

2006/10/31M. Hazumi (KEK)30 Backup Slides

2006/10/31M. Hazumi (KEK) 31 TCAD at work for sensor R&D (1)

2006/10/31M. Hazumi (KEK) 32 TCAD at work for sensor R&D (2)

2006/10/31M. Hazumi (KEK) 33 Aluminum (0V) 1000nm distance to the 1 st metal

2006/10/31M. Hazumi (KEK)34 End