DOUBLE-GATE DEVICES AND ANALYSIS 2004. 6. 22 발표자 : 이주용 2004-21599.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

The state-of-art based GaAs HBT
High Electron Mobility Transistors
EE 230: Optical Fiber Communication Lecture 11 From the movie Warriors of the Net Detectors.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Metal Semiconductor Field Effect Transistors
Evaluation of GaAs Power MESFET for Wireless Communication
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
The state-of-the-art InP-based HEMTs
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
Chapter 6 Field Effect Transistors 6.1 Transistor Operation 6.2 The Junction FET 6.3 The Metal-Semiconductor FET 6.4 The Metal-Insulator-Semiconductor.
EE213 VLSI Design S Daniels Channel Current = Rate of Flow of Charge I ds = Q/τ sd Derive transit time τ sd τ sd = channel length (L) / carrier velocity.
Philip Kim Department of Physics Columbia University Toward Carbon Based Electronics Beyond CMOS Devices.
1999 IEEE Symposium on Indium Phosphide & Related Materials
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
InAs Inserted Channel HEMT MDCL 이 종 원.
Introduction to FinFet
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
InAs Inserted HEMT 연성진.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
High Electron Mobility Transistor (HEMT)
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
Source-gated Transistor Seokmin Hong. Why do we need it? * Short Channel Effects Source/Drain Charge Sharing Drain-Induced Barrier Lowering Subsurface.
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
Millimeter-wave Device & Circuit Lab. (MDCL) Non-Alloyed Ohmic Contact in HEMTs Microwave devices 노 훈 희  Introduction  Ohmic.
Indium Phosphide and Related Materials
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Review of Semiconductor Devices
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
Microwave Device Term Project
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
QUANTUM-EFFECT DEVICES (QED)
Introduction to GaAs HBT and current technologies
MoS2 RF Transistor Suki Zhang 02/15/17.
ECE 695 Discussion Session GaN HEMT Technology – Recent Advances
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Instrumentation & Power Electronic Systems
Lower Limits To Specific Contact Resistivity
Metal Semiconductor Field Effect Transistors
Device Structure & Simulation
Contact Resistance Modeling in HEMT Devices
Realizing a Low Noise Amplifier with Carbon Nanotube Technology
High Transconductance Surface Channel In0. 53Ga0
積體電路元件與製程 半導體物理 半導體元件 PN junction CMOS 製程 MOS 元件.
A p-n junction is not a device
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Other FET’s and Optoelectronic Devices
Nanowire Gate-All-Around (GAA) FETs
Microwave Devices - Microwave Semiconductor Devices - 4
Reading: Finish Chapter 19.2
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
The MOS Transistors, n-well
Lecture #15 OUTLINE Diode analysis and applications continued
Beyond Si MOSFETs Part IV.
Beyond Si MOSFETs Part 1.
Presentation transcript:

DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용

OUTLINE DG-HEMT / VMT  Introduction  Material growth and device fabrication  DC and microwave characteristics  Conclusion

DOUBLE GATE HEMT IMPROVEMENT OF HEMT’s PERFORMANCE:  REDUCTION OF GATE LENGTH: (state of the art: Ft=562GHz, Fmax=330GHz for Lg=25nm)  BUT : SHORT CHANNEL EFFECT LIMITATION VERTICAL SCALING LIMITATION PARTICULARLY FOR Fmax

INTRODUCTION IMPROVEMENT OF HEMT’s PERFORMANCE:  REDUCTION OF GATE LENGTH: (state of the art: Ft=562GHz, Fmax=330GHz for Lg=25nm) ALTERNATIVE :  BUT : SHORT CHANNEL EFFECT LIMITATION VERTICAL SCALING LIMITATION PARTICULARLY FOR Fmax DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE gate 2 BCB host substrate source drain gate 1 ACTIVE LAYER

No buffer layer (reduction of output conductance: Gd) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE gate 2 BCB host substrate (GaAs) sourcedrain gate 1 ACTIVE LAYER

No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE gate 2 BCB host substrate (GaAs) sourcedrain gate 1 ACTIVE LAYER

No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd) DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE Higher 2DEG density in the channel (Reduction of the source and drain resistances: Rs, Rd) gate 2 BCB host substrate (GaAs) sourcedrain gate 1 ACTIVE LAYER

No buffer layer (reduction of output conductance: Gd) Two gate (improvement of transconductance: Gm) (reduction of gate resistance: Rg) (higher intrinsic capacitances: Cgs, Cgd) IMPROVEMENT OF THE MAXIMUM OSCILLATION FREQUENCY (Fmax) higher unloaded voltage gain (Gm/Gd) Lower parasitic resistances DOUBLE-GATE HEMT’s (DG-HEMT) ON TRANSFERRED SUBSTRATE Higher 2DEG density in the channel (Reduction of the source and drain resistances: Rs, Rd) gate 2 BCB host substrate (GaAs) sourcedrain gate 1 ACTIVE LAYER

MATERIAL GROWTH

   Si-  -doped( cm -2 )Si-  -doped( cm -2 )  Si-  -doped( cm -2 )Si-  -doped( cm -2 ) InGaAs2000 Å InAlAs100 Å InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer etch-stop layers InP substrate InGaAs InAlAs InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 channel cap layer Cap layer spacer etch- = Å InGaAs

MATERIAL GROWTH    Si-  -doped( cm -2 )Si-  -doped( cm -2 )  Si-  -doped( cm -2 )Si-  -doped( cm -2 ) InGaAs2000 Å InAlAs100 Å InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer etch-stop layers InP substrate InGaAs InAlAs InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 channel cap layer Cap layer spacer etch- = Å InGaAs

MATERIAL GROWTH ACTIVE LAYER    Si-  -doped( cm -2 )Si-  -doped( cm -2 )  Si-  -doped( cm -2 )Si-  -doped( cm -2 ) InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer etch-stop layers InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 InGaAs2000 Å InAlAs100 Å InP substrate InGaAs InAlAs channel cap layer Cap layer spacer etch- = Å InGaAs

MATERIAL GROWTH     InGaAs2000 Å InAlAs100 Å InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer InP substrate InGaAs InAlAs InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 spacer ACTIVE LAYER = Å InGaAs Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 ) etch-stop layers channel cap layer Cap layer etch- InGaAs2000 Å InAlAs100 Å InP substrate InGaAs InAlAs

MATERIAL GROWTH 2 nd HEMT 1 st HEMT     InGaAs2000 Å InAlAs100 Å InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer InP substrate InGaAs InAlAs InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 spacer ACTIVE LAYER = Å InGaAs Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 ) etch-stop layers channel cap layer Cap layer etch- InGaAs2000 Å InAlAs100 Å InP substrate InGaAs InAlAs

MATERIAL GROWTH 2 nd HEMT 1 st HEMT     InGaAs2000 Å InAlAs100 Å InGaAs100 ÅNd 18 cm -3 InAlAs120 Å InAlAs50 Å InGaAs InAlAs50 Å InAlAs120 Å InGaAs Nd 18 cm -3 schottky spacer InP substrate InGaAs InAlAs InGaAs Nd 18 cm -3 InAlAs 12 InGaAs100 ÅNd 18 cm -3 spacer ACTIVE LAYER = Å R ( active layer) = 130 Ω InGaAs Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 )Si-  -doped( cm -2 ) etch-stop layers channel cap layer Cap layer etch- InGaAs2000 Å InAlAs100 Å InP substrate InGaAs InAlAs

DEVICE FABRICATION PROCESS

CLASSIC HEMT PROCESS (1/4) InP Substrate Active Layer Bonding Pad gate 1 Ohmic Contact InAlAs etch-stop layer InGaAs etch-stop layer  Mesa isolation.  Ni/Ge/Au/Ni/Au Ohmic contact.  Bonding pads. (Ti/Au/Ti)  First T-gate process:  selective recess (Succinic Acid)

BONDING PROCESS (2/4)  BCB depositing on both active substrate and on GaAs host substrate.  Bonding. InP Substrate InGaAs etch-stop layer gate 1 Active Layer InAlAs etch-stop layer BCB GaAs host Substrate

ETCHING PROCESS (3/4) gate 1 Active Layer BCB GaAs host Substrate  Etching InP Substrate by hydrochloric solution.  Etching InGaAs etch-stop layer by Succinic Acid solution.  Etching InAlAs etch-stop layer by H 3 PO 4 /H 2 O 2 /H 2 O solution.

SECOND GATE PROCESS (4/4) gate 1 Active Layer BCB GaAs host Substrate gate 2 Bonding Pad Ohmic Contact  Second T-gate process:  selective recess (Succinic Acid)

gate 1 Active Layer BCB GaAs host Substrate gate 2 Bonding Pad Ohmic Contact SEM photograph of a double-gate HEMT gate 2 gate 1 Ohmic contact Active layer

DC AND MICROWAVE CHARACTERISTICS

W =2x50µm Lg1 = 0.1µm Lg2 = 0.28µm Vg max = 0.2V Vg step = -0.05V V GATE 1 =V GATE 2 Gm ext = 2650 mS/mm Id max = 500 mA/mm V P = -0.2 V  No Kink Effect  Good Pinch-Off I(V) CHARACTERISTICS

W =2x50µm Lg1 = 0.1µm Lg2 = 0.28µm Vds = 0.7 V Vgs = 0.1 V MICROWAVE CHARACTERISTICS

INTRINSIC PARAMETERS Gm = 3140 mS/mm Gd = 36 mS/mm Gm = 87 Gd DG-HEMT HEMT Gm = 1650 mS/mm Gd = 194 mS/mm Gm = 8 Gd Gm INT Gd INT

VELOCITY MODULATION TRANSISTOR

INTRODUCTION VMT??  Two channels with differing velocities  Drain current =>controlled by modulating carrier velocity in source-drain channel Fast top channel Slow bottom channel Two channel gate Two gates work in tandem => can maintain total channel population s D Vgt Vgb

CHARACTERISTICS Two channel of differing velocity Opportunity for higher speed than C-HEMT HEMT-like Noise Useful in ADCs and AMP Rapid switching time BUT : limited by source-drain transit time top and back gate capacitance should be equal

s D Vgt ”HIGH” Vgb ”LOW” t=0 Id=HIGH s D Vgt ”LOW” Vgb ”HIGH” 0<t<tswitch Id=HIGH s D Vgt ”LOW” Vgb ”HIGH” t=0 Id=LOW

VMT CONDUCTION BAND AlGaAsGaAsAlGaAs AlGaAsGaAsAlGaAs ( Biased to on ) ( Biased to off )

Material growth and device fabrication Top side processing only 600 ℃ 550 ℃ 2um 800 Å 140 Å 300 Å i-AlGaAs (graded)40 Å i-GaAs 200 Å 600 Å Semi insulating GaAs substrate p-GaAs i-AlGaAs n-GaAs i-GaAs i-AlGaAs n-AlGaAs n-GaAs50 Å 450 Å P+ back gate 2 DEG Low mobility channel (Donor ion and As defect) Separate high and low channel Channel isolation and preventing defect

EXPERIMENT (1) Sheet carrier concentration Top Lg=40nm Top and bottom channel concentration HEMT channel concentration VMT top channel concentration

EXPERIMENT (2) I-V characteristic on state Vgt=-0.85V Vgb=-1.06V off state Vgt=-2.20V Vgb=0V

EXPERIMENT (3) Ft=15GHz Fmax=100~600GHz C bottom =K c C top

CONCLUSION  0.1µm/0.28µm InAlAs/InGaAs DG-HEMTs:  high extrinsic transconductance = 2650mS/mm  f T = 110GHz f MAX = 200GHz  high unloaded voltage gain (gm/gd = 87)  Velocity Modulation Transistor:  easy fabrication process  low f T but f MAX = 100~600GHz  faster switching time

REFERENCE [1] Y. YAMASHITA et al. "Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh ft of 562GHz" IEEE Electron Device Letters, vol.23, n°10, October 2002, pp [2] A. ENDOH et al. "Fabrication technology and device performance of sub-50nm gate InP based HEMTs", Proceeding of IPRM2001, pp [3] G.K. CELLER et al. "Frontiers of silicon-on-insulator", Journal of Applied Physics, vol.93, n°9, pp , [4] M.J.W. RODWELL et al, "Submicron Scaling of HBTs", IEEE trans. on elect.devices,vol.48,n°11,pp ,2001. [5] S. B0LLAERT et al, "0.12 μm gate length In0.52Al0.48As/In0.53Ga0.47As HEMTs on transferred substrate", Electron Device Letters, vol.23, n°2, pp.73-75, [6]Fabrication and operation of a velocity modulation transistor Webb, K.J.; Cohen, E.B.; Melloch, M.R.; Electron Devices, IEEE Transactions on, Volume: 48, Issue: 12, Dec [7]Analysis of microwave characteristics of a double-channel FET employing the velocity-modulation transistor concept Maezawa, K.; Mizutani, T.;Electron Devices, IEEE Transactions on, Volume: 39, Issue: 11, Nov 1992 [8]H.Sakaki," velocity-modulation transistor(VMT)-A new field effect transistor concept." Japan.J Appl.Phys vol.21 [9]K.Maezawa, T.Mizutani, and S.Yamada " GaAs/AlAs double-channel structure for velocity modulation transistor."to el published in Japan 1992