Nucleus-Nucleus 2015, Catania,21.-26.6.2015 1  Motivation: need for accurate ion beam range verification in hadron therapy  Method: prompt-  imaging.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
GEANT4 Simulations of TIGRESS
Study of plastic scintillators for fast neutron measurements
Towards a Compton Telescope for Gamma-Ray Astronomy in the MeV range CSNSM-Orsay, AIM/CEA-Saclay, APC-Paris, MPE-Garching, NSI-Copenhagen AHEAD meeting,
RESMDD'02 pCT: Hartmut F.-W. Sadrozinski, SCIPP INITIAL STUDIES on PROTON COMPUTED TOMOGRAPHY USING SILICON STRIP DETECTORS L. Johnson, B. Keeney, G. Ross,
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Gamma Spectroscopy HPT TVAN Technical Training
experimental platform
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
The Design of Barrel Electromagnetic Calorimeter (BEMC) October Lu Jun-guang.
1. introduction 2. goal of luminosity monitor 3. Structure of BESII Luminosity detector 4. Calculation of the luminosity 5. MC of luminosity detector 6.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
Soft collective excitations in weakly bound nuclei studied with ELI-NP A.Krasznahorkay Inst. of Nuclear Research of the Hung. Acad. of Sci. (ATOMKI)
Measurement of Gas Bremsstrahlung at the Pohang Light Source Hyosang Lee Seoul National University, Q2C Pusan National University, HANUL HNP2011.
The High Resolution Array The High Resolution Array is a detector designed to detect and identify light charged particles like protons, deuterium, triton,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
11 th iWoRiD, Prague, Czech Republic Low-power Wide-dynamic-range Readout System for a 64-channel Multi-anode PMT of a Scintillation Gamma Camera Satoru.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
Enhancing InBeam PET with single Photon (Compton) Detection CERN September 2nd 2008 VALENCIA GROUP, IFIMED José M. Benlloch (PET hardware, speaker) José.
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
Luigi Cosentino - n_TOF collaboration meeting - Bologna - 27  29 November New monitors for flux measurement and n-beam profile in EAR2 Luigi Cosentino,
Steven Moon, A.J. Boston, H. Boston, J. Cresswell, L. Harkness, D. Judson, P.J. Nolan PSD9, Aberystwyth, Wales th September 2011 Compton imaging.
Nuclear Medicine Instrumentation 242 NMT 1 Dr. Abdo Mansour Assistant Professor of radiology
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
Room-Temperature Semiconductors: From concepts to applications Zhong He Nuclear Engineering and Radiological Sciences Department The University of Michigan,
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
12 th Pisa Meeting, Isola d’Elba, 25 May 2012 Politecnico di Milano, Italy New Development of Silicon Drift Detectors for Gamma-ray.
Readout Electronics for high-count-rate high-resolution
Hybrid Detector(s) for Complete Gamma Ray Spectroscopy S. S. Bhattacharjee, R Raut, S S Ghugre, A K Sinha UGC-DAE Consortium For Scientific Research, Kolkata.
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
Advanced Gamma Tracking Array Andy Boston The Advanced Gamma Tracking Array
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
Fastest Data Processing in Image Reconstruction for Compton Camera Imaging
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
The Lund R3B prototype: In-beam proton tests and simulations
AGATA Advanced Gamma Tracking Array
Resolution Studies of the CMS ECAL in the 2003 Test Beam
Development of a Compton Camera for online range monitoring
Low-power Wide-dynamic-range Readout System
A new-concept Absorption Calorimeter for the ELI-NP facility
ILC Detector Activities in Korea
DSSSD for b decay investigations of heavy neutron-rich isotopes
Application of Nuclear Physics
A.Takada, A.Takeda, T.Tanimori
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Simulation study for Forward Calorimeter in LHC-ALICE experiment
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
GEANT Simulations and Track Reconstruction
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Status and perspectives of the LNS-FRIBS facility
Implantation detector as active stopper Rakesh Kumar, P. Doornenbal, I
Presentation transcript:

Nucleus-Nucleus 2015, Catania,  Motivation: need for accurate ion beam range verification in hadron therapy  Method: prompt-  imaging via Compton scattering kinematics R&D on Compton camera (with electron tracking capability)  Design, setup and characterization of prototype detector system P.G. Thirolf, LMU Munich p, C A Compton Camera Prototype for Prompt Gamma Medical Imaging

Nucleus-Nucleus 2015, Catania, Prompt gamma emission from proton beam on biomedical sample  irradiation of water phantom with 100 MeV protons: 4.4 MeV 12 C 5.2 MeV 15 N, 15 O 6.1 MeV 16 O Counts / GeV/ incident p 50 cm Ø 10 cm p H2OH2O Energy [MeV]  key issue in hadron therapy: - localization of Bragg peak within patient/sample  range verification of therapeutic proton (or ion) beam (simulation)  experimental approach: imaging via prompt  emission from nuclear reactions

Nucleus-Nucleus 2015, Catania, (Prompt) Gamma Imaging: Compton Camera  exploit kinematics of Compton scattering: (i)  tracking: -

Nucleus-Nucleus 2015, Catania, (Prompt) Gamma Imaging: Compton Camera (ii ) electron tracking: advantage: - reconstruction of incompletely absorbed events  increased reconstruction efficiency E  ≥ 1-2 MeV

Nucleus-Nucleus 2015, Catania, Garching Compton Camera Prototype C. Lang et al., JINST 9 (2014) P01008, PhD thesis (LMU, 2015) 10 mm each Scatterer/Tracker Absorber 50 mm 85 mm E  : MeV e-e-   Compton camera layout:

Nucleus-Nucleus 2015, Catania, Compton Camera Prototype: Scatter/Tracker Array 6  Scatterer/Tracker Array: 6x double-sided silicon strip detectors (DSSSD)  active area 50 x 50 mm 2  thickness : 500  m  128 strips on each side  pitch size 390  m Saad Aldawood (KSU/LMU), PhD thesis, in preparation  DSSSD readout: Gassiplex (4x16 ch. ASIC):  charge-sensitive preamplifier  shaper  digital discriminator  track & hold-stage  multiplexed ADC Adapter board DSSSD Gassi- plex (64 ch.) Gassi- plex AC Wafer ACAC ACAC 2x 64 strips/ side VME readout controller

Nucleus-Nucleus 2015, Catania, Compton Camera Prototype 7 S. Aldawood, PhD thesis, in preparation - light tight enclosure - Faraday cage (+ ventilation, thermal control) scatterer/tracker array Compton camera prototype:

Nucleus-Nucleus 2015, Catania, Compton Camera Prototype 8  Absorber: LaBr 3 crystal: 50 x 50 x 30 mm 3. PMT: Hamamatsu H9500 (multi-anode: 16x16):.  signal processing: pixel (3x3 mm 2 ) - individual spectroscopy electronics channels for E, t S. Aldawood, PhD thesis, in preparation LaBr 3 PMT 256 ch. LaBr 3 PMT  fast amplifier + CFD (Mesytec MCFD-16, 16 ch.)  energy: charge-sensitive digital converter (Mesytec, 32 ch. VME-QDC)  time: (multi-hit) TDC (Mesytec, 32 ch. VME)

Nucleus-Nucleus 2015, Catania, LaBr 3 detector properties: energy / time resolution Pixel (x) Pixel (y)  energy resolution: = 662 keV ( 137 Cs)  time resolution:  t ~ 270 ps Time[ns] Energy [keV] Time[ns] Counts/0.1 ns - E d =20 MeV (pulsed) - water phantom - s=0.5 m:  t=12 ns  n  n H. v.d. Kolff, Master thesis, TU Delft/LMU (2014) 60 Co source:

Nucleus-Nucleus 2015, Catania, High-Energy Calibration 10  Experiment at Tandetron (HZDR, Dresden/Rossendorf): - low energy (~1 MeV) protons - E  = 4.44 MeV via 15 N(p,  ) 12 C sim.: GEANT MeV3.93 MeV3.42 MeV  validation of MC simulations counts / keV energy / keV 4.44 MeV 3.93 MeV3.42 MeV exp S. Aldawood, PhD thesis, in preparation

Nucleus-Nucleus 2015, Catania, Scatter/Tracker Array 11  energy deposition in 6 DSSSD layers: E  = 4.4 MeV - from simulation: increasing yield from front- to backside layers (accumulating contributions from Compton electrons) GEANT 4 layer 1 layer E  [keV] counts/ keV  simulations verified E  [ch.] counts/ ch. Exp. layer 6 layer S. Aldawood, PhD thesis, in preparation

Nucleus-Nucleus 2015, Catania, Commissioning at Garching Tandem Accelerator 12 p beam H 2 O phantom E  [keV] Counts / 8 keV 16 O* 4.44 MeV 5.11 MeV (6.130 – 0.511) ( – 1.022) (4.440 – 0.511) (4.440 – 1.022) 6.13 MeV 14 N* 12 C*  20 MeV protons + water phantom: prompt-  spectrum I. Castelhano, Master thesis, U Lisbon/LMU, 2014 sim.: GEANT 4

Nucleus-Nucleus 2015, Catania, LaBr 3 detector properties: Spatial resolution H. v.d. Kolff, Master thesis, TU Delft/LMU (2014)  spatial resolution: - collimated  source (Ø 1 mm): 137 Cs (662 keV, ca. 80 MBq)  2D scan of LaBr 3  data analysis: - background correction - gain matching/uniformity correction: electronics, PMT  “k-nearest neighbour” algorithm (TU Delft)  derive position information from monolithic crystal 137Cs137Cs automated positioning stage Pb shield 137 Cs LaBr 3 PMT collimator H.T. van Dam et al., IEEE TNS 58 (2011) 2139

Nucleus-Nucleus 2015, Catania, Spatial Resolution from Monolithic Scintillator: “kNN-Algorithm” H.T. van Dam et al., IEEE TNS 58 (2011) 2139

Nucleus-Nucleus 2015, Catania, LaBr 3 detector properties: Spatial resolution S. Aldawood, PhD thesis, LMU, in preparation - 2D scan with collimated 137 Cs source - irradiation of 16x16 pixels (3x3 mm 2 )  light amplitude distribution maps: - goal: 10 4 maps as reference data set (0.5 mm collimation, 0.5 mm step size) T. Marinšek, Master thesis, LMU, in preparation - irradiation of 102 x102 positions (grid: 0.5 mm) - 50 events/ position; k=2000:  kNN method (1 mm collimator) kNN position reconstruction

Nucleus-Nucleus 2015, Catania, Commissioning at Clinical Proton Beam Facility  OncoRay (Dresden): National Center for Radiation Research in Oncology cyclotron, f RF = 106 MHz   t = 9.4 ns tissue-equivalent targets: - water phantom - PMMA ( Polymethylmethacrylat ) proton penetration depth in water: E p = 225 MeV : ~ 32 cm (very recent data from June 1-5)

Nucleus-Nucleus 2015, Catania, Prompt  spectra PMMA target E p =100 MeV E p =160 MeV E p =225 MeV 12 C* water target E p =100 MeV E p =160 MeV E p =225 MeV 16 O* 12 C*

Nucleus-Nucleus 2015, Catania, Commissioning at Clinical Proton Beam  Strip detectors: layer 6 layer  Compton electron energy deposition: here: p-sides, each 64 odd strips 225 MeV, water target Si 1 Si 2 Si 3 Si 4 Si 5 Si 6 S. Liprandi, PhD thesis (in preparation)

Nucleus-Nucleus 2015, Catania, Summary  exploiting full potential of hadron therapy: - requires (online) verification of ion beam stopping range - Compton camera provides (prompt-  ) imaging capabilities - development of prototype with electron tracking capability ongoing - absorber: LaBr 3 scintillator - scatterer/tracker: array of double-sided Si-strip detectors  prompt-gamma range monitoring:  prototype characterization: - offline: energy and time resolution, photopeak efficiency - online: 4.4 MeV photons 20 MeV protons (Tandem) 100/160/225 MeV protons (clinical cyclotron) - ongoing: position determination in monolithic scintillator  next steps: - source position image reconstruction

Nucleus-Nucleus 2015, Catania, Thanks to … Thank you for your attention !  LMU Munich: C. Lang, S. Aldawood, I. Castelhano, H. v.d. Kolff, S. Liprandi, T. Marinsek, M. Pocevicius, B. Tegetmeyer, G. Dedes, R. Lutter, J. Bortfeldt, K. Parodi  TU Munich: L. Maier, M. Böhmer, R. Gernhäuser  TU Delft: D.R. Schaart  OncoRay/ HZDR, Dresden: G. Pausch, C. Golnik, F. Hueso-Gonzalez, T. Kormoll, K. Römer, J. Petzoldt, F. Fiedler Supported by DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics)

Nucleus-Nucleus 2015, Catania,  simulations for tracker/absorber specifications and expected performance: n DSSSD =6 full absorption  tracking ; source - tracker: 50 mm 64 pixel (6x6mm 2 ) 256 pixel (3x3mm 2 ) absorber: 300  m Si 500  m Si 300  m Si 500  m Si  + e tracking, 500  m  + e tracking, 300  m  tracking, 500  m  tracking, 300  m   +e Compton Camera Design Simulations - 6x6 mm 2  3x3 mm 2 pixel: - spatial resolution improves by ≥50 % - d=500  m + electron tracking:  improved efficiency -  ≈ – MeV for optimum resolution) - angular resolution ≈ 2 o – 2.5 o 2-6 MeV)