Pulsars and PWNs as sources of high-energy particles Jarosław Dyks CAMK, Toruń.

Slides:



Advertisements
Similar presentations
Pulsars Multi-Accelerator Radiation model Peking University.
Advertisements

The MAGIC telescope and the GLAST satellite La Palma, Roque de los Muchacos (28.8° latitude ° longitude, 2225 m asl) INAUGURATION: 10/10/2003 LAT.
Neutron Stars. Gradual compression of a stellar iron core  trans. [g cm -3 ] CompositionDegen. pressure Remarks Iron nuclei; nonrel. free e - nonrel.
Radio and Gamma-Ray Beams from Pulsars R. N. Manchester CSIRO Astronomy and Space Science Australia Telescope National Facility, Sydney Summary Pulse profiles.
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Pulsar High Energy Emission Models: What Works and What Doesn't “Standard” outer magnetosphere models - successes Shortcomings of the models Next steps?
Recent developments in the theory of Pulsar Wind Nebulae (Plerions) Yves Gallant LPTA, Université Montpellier II (relativistic) magneto-hydrodynamics of.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
The Fraction Geminga Alice K. Harding NASA Goddard Space Flight Center
Magnetic dissipation in Poynting dominated outflows Yuri Lyubarsky Ben-Gurion University.
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
The Phase-Resolved Spectra of the Crab Pulsar Jianjun Jia Jan 3, 2006.
Challenges of Relativistic Jets - Cracow (June 2006) Patrick Slane Pulsar Winds and Jets Pat Slane (Harvard-Smithsonian Center for Astrophysics)
PARTICLE ACCELERATION AND RADIATION IN PULSAR WIND NEBULAE
Matthew Kerr Stanford University / KIPAC.
Synthesis talk : relativistic pulsars winds from inside to far out Maxim Lyutikov (UBC)
PULSAR WIND NEBULAE: PROBLEMS AND PROSPECTS Jonathan Arons University of California, Berkeley.
Magnetic-field production by cosmic rays drifting upstream of SNR shocks Martin Pohl, ISU with Tom Stroman, ISU, Jacek Niemiec, PAN.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
A THREE-DIMENSIONAL OUTER MAGETOSPHERIC MODEL FOR GAMMA-RAY PULSARS : GEOMETRY, PAIR PRODUCTION, EMISSION MORPHOLOGIES, AND PHASE- RESOLVED SPECTRA K.S.CHENG,
Marcus ZieglerAPS April Meeting Gamma-Ray Pulsars in the GLAST Era Gamma-ray Large Area Space Telescope Marcus Ziegler Santa Cruz Institute for.
Magnetic reconnection at the termination shock in a striped pulsar wind Yuri Lyubarsky Ben-Gurion University, Israel In collaboration with: Jerome Petri.
Gamma-ray emission mechanism in pulsar magnetosphere – electrodynamics and models 徐佩君 清大天文所.
MODELING STATISTICAL PROPERTIES OF THE X-RAY EMISSION FROM AGED PULSAR WIND NEBULAE Rino Bandiera – INAF – Oss. Astrof. di Arcetri The Fast and the Furious,
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Radiation conditions during the GAMMA-400 observations:
张力 张力 2003 年 10 月 21 日于北京 2003 年 10 月 21 日于北京 Gamma-ray Luminosity and Death Lines of Pulsars with Outer Gaps.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Qiao,G.J. Dept. of Astronomy, Peking Univ. Collaborators: Zhang, B.( University of Nevada ), Xu, R.X.(PKU), Han,J.L.(NAOC), Lin,W.P.(SHO),Lee,K.J.(PKU)
Fundamental Problems: Pulsars to their Winds O. de Jager, C. Venter, M. Vorster (NWU, S.A.) North-West University, Potchefstroom South Africa NS & GB –
PULSAR WIND NEBULAE FROM RADIO TO X-RAYS Andrew Melatos (U. Melbourne) 1.Basic PWN physics: shock confinement, wave-like pulsar wind (unique) 2.Radio-to-X-ray.
No Longer! The Double Pulsar Maura McLaughlin West Virginia University 5 April 2012 Collaborators: Kramer (MPiFR), Stairs (UBC), Perera (WVU), Kim (WVU),
The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Pulsars: The radio/gamma-ray Connection Prospects for pulsar studies with AGILE and GLAST Synergy with radio telescopes –Timing and follow-up –Radio vs.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Harvard-Smithsonian Center for Astrophysics Patrick Slane Pulsar Wind Nebulae.
The Structure of the Pulsar Magnetosphere via Particle Simulation S. Shibata (1), T. Wada (2), S. Yuki (3), and M. Umizaki (3) (1)Department of Phys.Yamagata.
Multiple Sheet Beam Instability of Current Sheets in Striped Relativistic Winds Inertial Parallel E in Neutron Star Magnetospheres: Return Cuurent Sheets.
Multiple Sheet Beam Instability of Current Sheets in Striped Relativistic Winds Jonathan Arons University of California, Berkeley 1.
The Character of High Energy Emission From The Galactic Binary LS Andy Smith Smithsonian Astrophysical Observatory (for the VERITAS collaboration)
03/19/2007N. Bucciantini: Hubble Symposium Relativistic Outflows from Compact Rotators: Pulsar Winds, Pulsar-Wind Nebulae, and GRBs environment.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-Ray Emission from Pulsars
Pulsar Acceleration: The Chicken or the Egg? Alice Harding NASA Goddard Space Flight Center.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
PULSAR WINDS AND NEBULAE Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca Del Zanna, Delia.
Exploring  -ray emission models using millisecond pulsars in the Second Fermi Pulsar Catalog Alice K. Harding With T. Johnson, C. Venter, E. Grove Latest.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
Multi-wavelength observations of PSR B during its 2010 periastron passage Masha Chernyakova(DIAS), Andrii Neronov (ISDC), Aous Abdo (GMU), Damien.
Slot Gap Emission from Pulsar Magnetospheres
the global pulsar magnetosphere
Pulsars: the Magnetosphere and the γ-ray emission
Predicting the BRAING INDEX OF INTERMITTENT AND NULLING PULSARS
Observation of Pulsars and Plerions with MAGIC
Analysis of Fermi Source 3FGL
Basic Properties By Dr. Lohse, University of Berlin
Magnetars: wind braking
Magnetohydrodynamics of pulsar winds and plerions
the global pulsar magnetosphere
Pulse Nulling and Subpulse Drifting Properties in Pulsars
Presentation transcript:

Pulsars and PWNs as sources of high-energy particles Jarosław Dyks CAMK, Toruń

Pulsars: unipolar generators of high voltage and strong currents + sources of powerful el-mag wave

Charge-filled magnetosphere. Available  V limited to gaps within open field line region: Charge density derivable from the same E:

Digression: Intermittent pulsars (Kramer, Lyne, et al , 2007) ~2 times faster spin-down when the magnetosphere fills in with charges => estimate of  possible! B J

First ‘measurement’ of  GJ (Kramer et al. 2006) (for B ) + order of magnitude agreement for J

Photon-pair cascade => wind dominated by low-energy e+- pairs polar cap model outer gap model E-field screening due to polarization of e  =>

‘Cascade models’ (PC/OG) roughly reproduce flux and spectra of gamma ray pulsars Vela pulsar Rudak & Dyks 2007 GLAST may detect the super-exponential HE cutoff near 30 GeV HESS may detect the ICS component in TeV band

EGRET pulse profiles Difficult to understand (radio ahead of the leading  -ray peak). Not from polar cap! Mostly of caustic origin? Radially elongated regions required (polar gap => slot gap).

We end up with: I GJ  10^33 primary electrons/s with   10^6 n  I GJ  10^38 secondary e  pairs/s with    10^2   10^4 instead of: 10^39 electrons/s   10^6   0.02 needed to reproduce spectrum and morphology of Crab PWN

Hillas et al

‘Gapology’ may be wrong => Force free codes (Spitkovsky 2007) energy loss for the plasma-filled inclined dipole calculated for the first time First principle codes (Krause-Polstorff & Michel ): no wind! mostly empty magnetoshpere  E + jxB/c = 0

Yadigaroglu 1997  >> 1 Throwing away toroidal field

PULSES FROM WIND! Kirk, Skjaeraasen & Gallant 2001 Petri & Kirk 2005

Crab nebula spectrum (SR + ICS)

Morphology: jet/torus + knots/wisps Komissarov & Lyubarski 2004 Hester et al Total energy flux  (sin  )^2 + const

Evolution generally understood (free+Sedov expansion, reverse shock crush, bow shock nebula). Example: relic PWN.

Conclusions 1. Success in understanding of PWN spectra/morphology/evolution 2. No easy way to connect this to the pulsar (sigma problem) Numerical simulations far too ideal to tackle this. 3. Some progress thanks to CGRO and radio observations (gamma rays not from polar caps, estimate of GJ density, double pulsar: LOS through LC) 4. GLAST will increase the number and quality of HE spectra and profiles, HESS keeps constraining the outer gap model