2. CMOS Op-amp설계 (1).

Slides:



Advertisements
Similar presentations
Design Review Yuan Ji Curtis Mayberry Two Stage fully differential opamp with Common Mode Feedback.
Advertisements

CMOS Operational Amplifiers (A Review)
Differential Amplifiers
DIFFERENTIAL AMPLIFIERS. DIFFERENTIAL AMPLIFIER 1.VERY HIGH INPUT IMPEDENCE 2.VERY HIGH BANDWIDTH 3.DIFFERENTIAL INPUT 4.DC DIFFERENTIAL INPUT ACCEPTED.
We have so far seen the structure of a differential amplifier, the input stage of an operational amplifier. The second stage of the simplest possible operational.
APPENDIX B SPICE DEVICE MODELS AND DESIGN SIMULATION EXAMPLES USING PSPICE AND MULTISIM Microelectronic Circuits, Sixth Edition Sedra/Smith.
Differential and Multistage Amplifiers
Basic Analog Design Giovanni Anelli 15 March 2005 Part I
Chapter 5 Differential and Multistage Amplifier
Introduction to Op Amps
Operational Amplifier (2)
Chapter #12: Operational-Amplifier Circuits
Types of Operational Amplifiers
“Op-Amp” Operational Amplifier Non Inverting Amplifier Inverting Amplifier Adder –(and Subtractor using an Inverter) Differential Amplifier Integrator.
Introduction to Op Amp Circuits ELEC 121. April 2004ELEC 121 Op Amps2 Basic Op-Amp The op-amp is a differential amplifier with a very high open loop gain.
1 Lecture 13 High-Gain Differential Amplifier Design Woodward Yang School of Engineering and Applied Sciences Harvard University
09/16/2010© 2010 NTUST Today Course overview and information.
Differential Amplifiers.  What is a Differential Amplifier ? Some Definitions and Symbols  Differential-mode input voltage, v ID, is the voltage difference.
1 Opamps Part 2 Dr. David W. Graham West Virginia University Lane Department of Computer Science and Electrical Engineering © 2009 David W. Graham.
FULLY DIFFERENTIAL OPAMP Eduardo Picatoste Calorimeter Electronics Upgrade Meeting.
Electronics Principles & Applications Fifth Edition Chapter 9 Operational Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
10/11/2015 Operational Amplifier Characterization Chapter 3.
Chapter #8: Differential and Multistage Amplifiers
Module 4 Operational Amplifier
ECE4430 Project Presentation
1 EE 501 Fall 2009 Design Project 1 Fully differential multi-stage CMOS Op Amp with Common Mode Feedback and Compensation for high GB.
W3,4: Operational Amplifier Design Insoo Kim, Jaehyun Lim, Kyungtae Kang Mixed Signal CHIP Design Lab. Department of Computer Science & Engineering The.
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
UNIT – III : OP-AMPS AND APPLICATIONS
Improving Op Amp performance
Unit 8 Operational Amplifier. Objectives: Ideal versus practical operational amplifier Performance parameters Some applications –Peak detector –Absolute.
OpAmp (OTA) Design The design process involves two distinct activities: Architecture Design –Find an architecture already available and adapt it to present.
Operational Amplifiers Op Amps – a useful building block K. El-Ayat 11.
1 Amplifiers. Equivalent Circuit of a Voltage Amplifier G vo V i IoIo RoRo VoVo ViVi RiRi IiIi Amplifier ViVi VoVo (a) Black Box Representation.
Chapter 15 Differential Amplifiers and Operational Amplifier Design
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
Advanced opamps and current mirrors
Solid-State Devices & Circuits 17. Differential Amplifiers
741 Op-Amp Where we are going:. Typical CMOS Amplifier.
Differential Amplifiers
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
7-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon MOS Inverter — All essential features of MOS logic gates DC and transient characteristics.
Exam 3 information Open book, open notes, bring a calculator Eligible topics (1 of 9) (not an exhaustive list) Generic amplifiers Amplifier basics voltage.
1 CHAPTER 20 OPERATIONAL AMPLIFIERS (OP-AMPS). 2 Introduction to operational amplifiers Symbol and Terminals.
CMOS 2-Stage OP AMP 설계 DARK HORSE 이 용 원 홍 길 선
CHAPTER 20 OPERATIONAL AMPLIFIERS (OP-AMPS). Introduction to operational amplifiers Symbol and Terminals.
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
Module 2 Operational Amplifier Basics
Analog CMOS Integrated Circuit Design Opamp Design
PUSAT PENGAJIAN KEJURUTERAAN KOMPUTER & PERHUBUNGAN
Open book, open notes, bring a calculator
Operational Amplifier
Branch:- Electrical (09)
The open loop gain of this op-amp is 105 and the bandwidth is 10 Hz
Lecture 13 High-Gain Differential Amplifier Design
OSCILLATOR & Operational Amplifier
Basic Amplifiers and Differential Amplifier
Operational Amplifier Design
CMOS Analog Design Using All-Region MOSFET Modeling
Input common mode range drop
Op Amp Specs and Test Benches
Lecture 13 High-Gain Differential Amplifier Design
Last time Reviewed 4 devices in CMOS Transistors: main device
Common mode feedback for fully differential amplifiers
Input common mode range
Common mode feedback for fully differential amplifiers
Differential Amplifier
Rail-to-rail Input Stage
LOW VOLTAGE OP AMPS We will cover: Methodology:
Differential Amplifier
Presentation transcript:

2. CMOS Op-amp설계 (1)

Fully balanced differential 1. Op-amp의 구조 및 특성 64 1. Op-amp의 구조 및 특성 (1) Op-amp의 구조에 따른 분류 (1-1) 입출력 형태에 따른 Op-amp Single-ended Op-amp Fully differential Op-amp Fully balanced differential Op-amp - + VSS VDD vout vin Avin - + VSS VDD vin vout Avin - + VSS VDD vin vo1 vout vo2 1/2Avin

(1-2) 이득단 개수에 따른 Op-amp One-Stage Op-amp Two-Stage Op-amp 65 (1-2) 이득단 개수에 따른 Op-amp One-Stage Op-amp Two-Stage Op-amp Compensation Circuit Input Gain Stage Output Stage vin vout Input Gain Stage 2nd-Gain Stage Output Stage vin vout Bias Circuit Bias Circuit A (dB) 2-Stage Pole 1 A2 Pole 2 1-Stage 2-Stage 1-Stage Pole 1 A1 w1 w2 > A1 < A2 w2 w1 f (Hz)

(1-3) 단 연결 형태에 따른 Op-amp Cascode Op-amp Cascade Op-amp High gain 66 (1-3) 단 연결 형태에 따른 Op-amp Cascade Op-amp Cascode Op-amp Stage vin Stage Stage Stage vout Stage vout vin High gain Stage High frequency

2-Stage single-ended uncompensated Op-amp 67 (1-4) 여러가지 Op-amp의 구조 2-Stage single-ended uncompensated Op-amp Vin+ Vin- M5 M4 M3 M1 Cc Vout VDD GND CL M7 M9 M6 M2

2-Stage single-ended compensated Op-amp 68 2-Stage single-ended compensated Op-amp Vin+ Vin- M5 M4 M3 M1 Cc Vout VDD GND CL M7 M9 M6 M2

2-Stage single-ended Op-amp using tracking-compensation scheme 69 2-Stage single-ended Op-amp using tracking-compensation scheme

2-Stage single-ended Op-amp with cascode second stage 70 2-Stage single-ended Op-amp with cascode second stage

2-Stage single-ended Op-amp with cascode differential input stage 71 2-Stage single-ended Op-amp with cascode differential input stage

1-Stage input-cascode single-ended Op-amp 72 1-Stage input-cascode single-ended Op-amp 1-Stage input-cascode Telescopic Op-amp VSS M2 Vi 1 Vi 2 M3 VO 1 VO 2

1-Stage differential to single-ended folded cascode Op-amp 73 1-Stage differential to single-ended folded cascode Op-amp VDD VSS M1 M2 Vi c M3 M9 M7 M11 M8 M10 M6 M5 M4 VB3 VO VB1 VB2

1-Stage fully differential folded cascode Op-amp(1) 74 1-Stage fully differential folded cascode Op-amp(1) VDD VSS M1 M2 Vi n+ Vi n- M3 M9 M7 M11 M6 M5 M4 VB3 VO+ VB1 VB2 VB4 VO-

1-Stage fully differential folded cascode Op-amp(2) 75 1-Stage fully differential folded cascode Op-amp(2) C L M V DD 1 2 6 8 5 7 SS v in - + BN1 out 9 10 3 4 BP1 CMFB BP2

1. Op-amp의 구조 및 특성 76 1-Stage fully differential folded cascode Op-amp with gain boosting (1)

1. Op-amp의 구조 및 특성 77 1-Stage fully differential folded cascode Op-amp with gain boosting (2)

1-Stage fully differential folded cascode Op-amp with CMFB circuit 78 1-Stage fully differential folded cascode Op-amp with CMFB circuit CMFB

Rail to rail folded cascode Op-amp 79 Rail to rail folded cascode Op-amp

(2) Op-amp의 특성 (2-1) Ideal Op-amp - + - - + + Vin Avd 80 (2) Op-amp의 특성 (2-1) Ideal Op-amp - Vin Avd Differential mode gain (Avd) -> Vout + Common mode gain (Avc) -> 0 Vout Avd = Input resistance (Ri) -> Vin + Vin - - + VSS VDD Vin Ri Ro RL Output resistance (Ro) -> 0 Avc - + Vin_com Vout Avc = Vout

혼용하며 거의 Capacitive Load를 구동하므로 1. Op-amp의 구조 및 특성 81 (2-2) Practical Op-amp nMOS n+ Poly-Si SiO2 P-sub Tr소자의 Charge storage 영향  Avd 감소 Gm, Ro 의 값이 유한하므로  Avd 유한 신호 주파수 증가  Avc 증가 Ri G S D B Vin > 1012 W CMOS 입력단자가 MOS의 gate에 연결되므로 vout - + vin Ri > 1012 W (무한대에 가깝다) Digital CKT CL 대부분의 CMOS Op-amp회로는 칩 내부에서 디지털회로와 혼용하며 거의 Capacitive Load를 구동하므로 Ro가 작을 필요가 없다.

(3-1) Power supply voltage (VDD, VSS) 1. Op-amp의 구조 및 특성 82 (3) Op-amp의 설계 parameter (3-1) Power supply voltage (VDD, VSS) 공정 parameter 와 함께 결정됨  0.35mm(3.3V) - + vin vout VSS VDD Io CL RL AVO (3-2) Open loop gain ; DC 소신호 전압이득 (AVO) dB = 20 log10 AVO ( AVO = ) Vout Vin + Vin - (3-3) Power dissipation (Pdiss) Pdiss = Power supply voltage(VDD-VSS) x DC current(Io) (3-4) Load driving ability Capacitive load (CL)  ( cf : CMOS mixed 회로) Resistive load (RL)  ( cf : BJT 회로 )

(3-7) Unity Gain Frequency (funity) & f-3dB 1. Op-amp의 구조 및 특성 83 (3-5) Slew rate(SR) 출력전압의 시간 t 에 대한 최대변화율 Current-sourcing/sinking capability of the first stage t Vin Vout Slope= +SR -SR Settling time (Ts) 1% (Final value) C 를 충 방전 할 수 있는 최대전류로 결정 SR = Io/ Cc (V/ms) (3-6) Settling time(Ts) 출력전압의 Final value (1%이내)에 도달시간 (3-7) Unity Gain Frequency (funity) & f-3dB UGF : Loop gain의 크기가 1(0dB)에서의 주파수 f-3dB : Loop gain의 크기가 0.707(-3dB)에서의 주파수 AVo (AVO) * f -3dB = f unity f-3dB f unity -3dB 20log 10 1 = 0dB 20log 10 0.707 = -3dB 0dB f

(3-8) Phase margin(PM) Loop gain의 크기가 1(0dB)에서의 phase와 (180o)의 차이값 1. Op-amp의 구조 및 특성 84 (3-8) Phase margin(PM) Loop gain의 크기가 1(0dB)에서의 phase와 (180o)의 차이값 1-stage(single pole) Op-amp PM > 90o 이 되므로 항상 안정 2-stage(2-pole) Op-amp ; PM > 60o 이 되어야 안정

(3-9) Common mode rejection ratio (CMRR) 1. Op-amp의 구조 및 특성 85 Avc - + Vin_com Vout VSS VDD 공통모드 신호 증폭 (3-9) Common mode rejection ratio (CMRR) 공통 모드 입력 신호의 증폭 이득 제거율 Avd CMRR = Avc (3-10) Power supply rejection ratio (PSRR) 전원단자에 나타나는 noise 신호등의 증폭 이득 제거율 Avc - + Vout VSS VDD Vin VDD 잡음증폭 VSS 잡음증폭 Avd PSRR + = Vo / VDD Avd PSRR - = Vo / VSS

(3-11) 공통모드 입력전압 범위 ( Input common mode voltage range ; ICMR ) 1. Op-amp의 구조 및 특성 86 (3-11) 공통모드 입력전압 범위 ( Input common mode voltage range ; ICMR ) 최대의 이득을 얻기 위해 모든 트랜지스터 들이 saturation영역에서 동작하기 위한 입력 전압범위 Vin - M1 M2 VDD M5 M3 VSS M4 Vin + CMR max VDD - VDSAT3 - VDSAT1 - VTHp1 CMR min VSS + VTHn4 + VDSAT4 - VTHp1

(3-12) 선형 출력전압 범위 ( Linear output voltage range ; OVR ) 1. Op-amp의 구조 및 특성 87 (3-12) 선형 출력전압 범위 ( Linear output voltage range ; OVR ) 모든 트랜지스터 들이 saturation영역에서 동작하여 차동모드 전압이득이 최대가 되기 위한 출력 전압 범위(Output swing) VDD OVR min OVR max VSS + VDSAT6 VDD - VDSAT7 M7 Vout M6 VSS

2. 2-stage Op-amp 2. 2-stage Op-amp (1) Uncompensated CMOS Op-amp V6 88 2. 2-stage Op-amp (1) Uncompensated CMOS Op-amp VDD M4 M5 V6 M6 M1 M2 Vin+ Vin- Vout Cc CL M3 M9 M7 GND + + + v g v R C v g v R C v in mI in o1 1 6 m6 6 o2 L out - - -

(2) Frequency Response of uncompensated Op-amp 2. 2-stage Op-amp 89 (2) Frequency Response of uncompensated Op-amp -180 w o <A v (s) -90 phase margin |A (s)| [dB] (0)| |p 1 | 2

(3) Compensated CMOS Op-amp 2. 2-stage Op-amp 90 (3) Compensated CMOS Op-amp Vin+ Vin- M5 M4 M3 M1 Cc Vout VDD GND CL M7 M9 M6 M2 g mI v in R o1 C 1 + - m6 6 o2 L out Cc

(4) Compensated CMOS Op-amp 2. 2-stage Op-amp 91 (4) Compensated CMOS Op-amp g mI v in R o1 C 1 + - m6 6 o2 L out Cc

(5) Compensated CMOS Op-amp 2. 2-stage Op-amp 92 (5) Compensated CMOS Op-amp

(6) Frequency Response of CMOS Op-amp 2. 2-stage Op-amp 93 (6) Frequency Response of CMOS Op-amp -180 w o <A v (s) -90 phase margin |A (s)| [dB] (0)| |p 1 | 2 |A v (s)| [dB] w -180 o (0)| <A (s) -90 phase margin |p 1 | 2 z' -270 Av(0) p1 p2 o z1

(7) Time Response according to Phase Margin 2. 2-stage Op-amp 94 (7) Time Response according to Phase Margin 2 4 6 8 10 0.2 0.4 0.6 0.8 1 1.2 normalized time Q=0.1 Q=0.5 Q=1.0

3. 1-stage cascode and folded cascode Op-amp 3. 1-stage cascode Op-amp 95 3. 1-stage cascode and folded cascode Op-amp (1) 1-stage Telescopic Folded cascode Op-amp Telescopic Folded cascode  Single stage amplifier  low voltage  No need compensation capacitance

(2) Frequency Response of 1-stage cascode Op-amp 96 (2) Frequency Response of 1-stage cascode Op-amp + + Vin gm1Vin Ro CL Vout – – |A v (s)| [dB] w -180 o (0)| <A (s) -90 phase margin |p I | II M9

Small-signal analysis 3. 1-stage cascode Op-amp 97 (5) Gmd of single-ended folded cascode Op-amp Small-signal analysis VDD 10 ro4 M1 M2 M9 M7 M11 M8 M10 M6 ro5 iod= 2id ro id 12 M4 M5 4 5 13 M6 M7 4 5 VO 7 1 6 +Vi d -Vid 2 M1 M2 3 M8 CL=10pF +Vi d -Vid M9 8 VB3 9 M3 M10 M11 14 VSS 11 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(6) Ro of the single-ended folded cascode Op-amp 3. 1-stage cascode Op-amp 98 (6) Ro of the single-ended folded cascode Op-amp CG출력 저항 = ro4 ro5 M6 M7 Ro1 Ro2 Ro6 Ro7 ix ix Ro9 M1 M2 Vx + - M8 M9 ro3 CG입력 저항 = rs2 M10 M11 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(7) CMRR of the single-ended folded cascode Op-amp 3. 1-stage cascode Op-amp 99 (7) CMRR of the single-ended folded cascode Op-amp VDD VSS M1 M2 Vi c M3 M9 M7 M11 M8 M10 M6 M5 M4 VB3 VO VB1 VB2 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

Active 공통모드 입력전압 범위 (ICMR) Output Voltage range(OVR) 3. 1-stage cascode Op-amp 100 (9) ICMR & OVR of the single-ended folded cascode Op-amp VDD VSS M1 M2 Vi 1 Vi 2 M3 M9 M7 M11 M8 M10 M6 M5 M4 VB3 VO VB1 VB2 + VTHp - - VTHn + Active 공통모드 입력전압 범위 (ICMR) Output Voltage range(OVR) Min Max 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(10) ICMR of the NMOS & PMOS input single-ended folded cascode Op-amp 3. 1-stage cascode Op-amp 101 (10) ICMR of the NMOS & PMOS input single-ended folded cascode Op-amp Active 공통모드 입력전압 범위 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(11) 주파수 특성 of the single-ended folded cascode Op-amp 3. 1-stage cascode Op-amp 101 (11) 주파수 특성 of the single-ended folded cascode Op-amp VDD VSS M1 M2 Vi 1 Vi 2 M3 M9 M7 M11 M8 M10 M6 M5 M4 VB3 VO VB1 VB2 CL Frequency compensation : increase CL → decrease p1, no effect on p2 High Impedance Node : output node only 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(12) Slew rate of the single-ended folded cascode Op-amp 3. 1-stage cascode Op-amp 102 (12) Slew rate of the single-ended folded cascode Op-amp Slew : non-linear behavior (단위이득회로) (입력 Vi+의 변화에 대한 출력 Vo의 변화) 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

4. Fully differential Op-amp 103 4. Fully differential Op-amp (1) 완전 차동(fully differential) OP amp Differential input, Differential output → Easy to cascade OP amps → Insensitive to supply noise → Requires CMFB VDD M4 VB1 M5 M6 M7 VB2 VO+ VO- Vi n+ Vi n- M1 M2 M9 VB3 VB3 M3 M11 VB4 VSS 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

4. Fully differential Op-amp 104 (2) Rail to Rail input stage : single differential pair  Single-polarity differential pair limit input range  nMOS differential pair : VSS+VGS1+VDS3(sat)< input < VDD  pMOS differential pair : VSS <input<VDD-(VGS4+VDS6(sat))

4. Fully differential Op-amp 105 (3) Rail-to-rail 완전 차동 folded cascode Op-amp * 공통모드 전압범위 및 차동모드 전압이득 최소값 : 최대값 : 공통모드 입력전압 범위 NMOS 차동 증폭단 PMOS 저주파 차동모드 전압이득Avd Vss∼Vsn Off On Vsn∼Vsp Vsp∼VDD 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

4. Fully differential Op-amp 106 (4) Rail-to-rail 완전 차동 folded cascode Op-amp * 소신호 출력저항 Ro 계산 R6 = 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

4. Fully differential Op-amp 107 (5) Fully differential folded cascode OPAMP C L M V DD 1 2 6 8 5 7 SS v in - + BN1 out 9 10 3 4 BP1 CMFB BP2

5. Gain-boosted cascode Op-amp * Gain-boosting of cascode amp 108 5. Gain-boosted cascode Op-amp (1) Increase gain of 1-stage cascode Op-amp by gain-boosting * Gain-boosting of cascode amp (참조 p 56) 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

(2) Fully differential Gain-boosting of the feedback amp 5. Gain-boosted cascode Op-amp 109 (2) Fully differential Gain-boosting of the feedback amp output + output - + - Limited output range Improved output range Min Vout : VDSAT(ISS1)+VDSAT1+VDSAT3 Min Vout : VDSAT(ISS2)+VDSAT5+VDSAT3+VTH5 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

5. Gain-boosted cascode Op-amp 110 (3) Fully differential gain-boosting Op-amp

Fully differential Op-amp requires CMFB 6. 공통모드 피드백 111 6. 공통모드 피드백 (common mode feedback: CMFB) 회로 Fully differential Op-amp requires CMFB CMFB circuits (1) Source follower + resistor divider CMFB circuit (2) Triode Transistor CMFB circuit (3) Differential pair CMFB circuit (4) Switched-capacitor CMFB circuit

(1) Source follower + resistor divider CMFB 6. 공통모드 피드백 112 (1) Source follower + resistor divider CMFB Vout MIN limited to VGS7 + V(l1) l1 × (R1 + R2) > Vout swing → large l1 or large R1, R2 Usually W/L (M7, M8) very large (2) Triode TR CMFB M7, M8: not in the signal path → large cap no effect in differential gain Vout MIN limited VTHn M7, M8: deep triode, large W/L → large cap

(3) Differential pair CMFB 6. 공통모드 피드백 113 (3) Differential pair CMFB Fully Differential OP amp Vout MAX limited to VDD - |VTHp| 2-stage CM → needs frequency compensation CMFB circuit : Vcmfb=A × 0.5(V o+ + Vo-) W/L(M6,M7) very small to increase linear operating range Vout MAX limited to VDD – VDSAT10 - |VGS6|, VoutCM set to VcmREF W/L(M6, M7, M8, M9) very small to increase linear operating range of CMFB circuit 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

Can be used in switching circuits No limit in Vout 6. 공통모드 피드백 114 (4) Switched-capacitor CMFB Can be used in switching circuits No limit in Vout 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun

7. 여러가지 Op-amp의 특성비교 Gain Output Swing Speed Power Dissipation Noise 115 7. 여러가지 Op-amp의 특성비교 Gain Output Swing Speed Power Dissipation Noise Telescopic Folded-Cascode Two-Stage Gain-Boosted Medium High Highest Low 참조 :CMOS아날로그 집접회로 설계, POSTECH, Bark Hong-Jun