King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 1 جامعة الملك فيصل عمادة.

Slides:



Advertisements
Similar presentations
Introduction to Computational Linguistics
Advertisements

Introduction to Computational Linguistics
Statistical Methods and Linguistics - Steven Abney Thur. POSTECH Computer Science NLP Lab Shim Jun-Hyuk.
1 Linguistics and translation theory Mark Shuttleworth Teaching Translation Swansea, 20 January 2006.
Natural Language and Speech Processing Creation of computational models of the understanding and the generation of natural language. Different fields coming.
NLP and Speech Course Review. Morphological Analyzer Lexicon Part-of-Speech (POS) Tagging Grammar Rules Parser thethe – determiner Det NP → Det.
Sunita Sarawagi.  Enables richer forms of queries  Facilitates source integration and queries spanning sources “Information Extraction refers to the.
Introduction to Computational Linguistics Lecture 2.
C SC 620 Advanced Topics in Natural Language Processing Sandiway Fong.
Introduction to CL Session 1: 7/08/2011. What is computational linguistics? Processing natural language text by computers  for practical applications.
Properties of Text CS336 Lecture 3:. 2 Information Retrieval Searching unstructured documents Typically text –Newspaper articles –Web pages Other documents.
تمرين شماره 1 درس NLP سيلابس درس NLP در دانشگاه هاي ديگر ___________________________ راحله مکي استاد درس: دکتر عبدالله زاده پاييز 85.
Machine Learning in Natural Language Processing Noriko Tomuro November 16, 2006.
Research Topics Natural Language Processing Image Processing CSC 3990.
March 1, 2009 Dr. Muhammed Al-Mulhem 1 ICS 482 Natural Language Processing INTRODUCTION Muhammed Al-Mulhem March 1, 2009.
Statistical Natural Language Processing. What is NLP?  Natural Language Processing (NLP), or Computational Linguistics, is concerned with theoretical.
Lecture 1, 7/21/2005Natural Language Processing1 CS60057 Speech &Natural Language Processing Autumn 2005 Lecture 1 21 July 2005.
ELN – Natural Language Processing Giuseppe Attardi
Linguistics 362: Introduction to Natural Language Processing
Introduction to NLP Chapter 1: Overview Heshaam Faili University of Tehran.
9/8/20151 Natural Language Processing Lecture Notes 1.
Introduction to Natural Language Processing Heshaam Faili University of Tehran.
Martin KayCL Introduction1 Martin Kay Stanford University Ling 138/238.
CCSB354 ARTIFICIAL INTELLIGENCE (AI)
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Computational Linguistics INTroduction
Computational Linguistics Yoad Winter *General overview *Examples: Transducers; Stanford Parser; Google Translate; Word-Sense Disambiguation * Finite State.
1 Computational Linguistics Ling 200 Spring 2006.
Natural Language Processing Introduction. 2 Natural Language Processing We’re going to study what goes into getting computers to perform useful and interesting.
Natural Language Processing Guangyan Song. What is NLP  Natural Language processing (NLP) is a field of computer science and linguistics concerned with.
Suléne Pilon & Danie Prinsloo Overview: Teaching and Training in South Africa 25 November 2008;
GRAMMARS David Kauchak CS159 – Fall 2014 some slides adapted from Ray Mooney.
Postgraduate Diploma in Translation Lecture 1 Computers and Language.
Natural Language Processing Artificial Intelligence CMSC February 28, 2002.
Introduction to CL & NLP CMSC April 1, 2003.
Research Topics CSC Parallel Computing & Compilers CSC 3990.
1 CSI 5180: Topics in AI: Natural Language Processing, A Statistical Approach Instructor: Nathalie Japkowicz Objectives of.
Introduction to Linguistics Ms. Suha Jawabreh Lecture # 2.
October 2005CSA3180 NLP1 CSA3180 Natural Language Processing Introduction and Course Overview.
Introduction to Linguistics Ms. Suha Jawabreh Lecture 19.
CSA2050 Introduction to Computational Linguistics Lecture 1 Overview.
The Difference Between Linguistics and “Lingvistika”
Computational Linguistics. The Subject Computational Linguistics is a branch of linguistics that concerns with the statistical and rule-based natural.
What you have learned and how you can use it : Grammars and Lexicons Parts I-III.
CSA2050 Introduction to Computational Linguistics Lecture 1 What is Computational Linguistics?
ICS 482: Natural language Processing Pre-introduction
Natural Language Processing Menu Based Natural Language Interfaces -Kyle Neumeier.
Introduction to Computational Linguistics (LIN3060) Lecture 1 Computers and Language.
Lecture 1 Lec. Maha Alwasidi. Branches of Linguistics There are two main branches: Theoretical linguistics and applied linguistics Theoretical linguistics.
1 Introduction to Computational Linguistics Eleni Miltsakaki AUTH Spring 2006-Lecture 1.
For Monday Read chapter 24, sections 1-3 Homework: –Chapter 23, exercise 8.
For Monday Read chapter 26 Last Homework –Chapter 23, exercise 7.
Auckland 2012Kilgarriff: NLP and Corpus Processing1 The contribution of NLP: corpus processing.
CSE467/567 Computational Linguistics Carl Alphonce Computer Science & Engineering University at Buffalo.
Natural Language Processing Chapter 1 : Introduction.
What Is Text Mining? Also known as Text Data Mining Process of examining large collections of unstructured textual resources in order to generate new.
National Technical University of Ukraine “Kiev Polytechnic Institute” Heat and energy design faculty Department of automation design of energy processes.
CS460/IT632 Natural Language Processing/Language Technology for the Web Lecture 1 (03/01/06) Prof. Pushpak Bhattacharyya IIT Bombay Introduction to Natural.
For Friday Finish chapter 23 Homework –Chapter 23, exercise 15.
1 An Introduction to Computational Linguistics Mohammad Bahrani.
For Monday Read chapter 26 Homework: –Chapter 23, exercises 8 and 9.
INTRODUCTION TO APPLIED LINGUISTICS
King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 1 جامعة الملك فيصل عمادة.
King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 1 King Faisal University.
Research Topics Natural Language Processing Image Processing
Natural Language Processing
Information Retrieval
Language translation Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Sections
Presentation transcript:

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 1 جامعة الملك فيصل عمادة التعلم الإلكتروني والتعليم عن بعد Language & IT Dr. Abdullah Al Fraidan 1

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 2 Lecture12 NLP Natural Language Processing

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 3 What is NLP? Natural Language Processing (NLP) Computers use (analyze, understand, generate) natural language A somewhat applied field Computational Linguistics (CL) Computational aspects of the human language faculty More theoretical

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Why Study NLP? Human language interesting & challenging NLP offers insights into language Language is the medium of the web Interdisciplinary: Ling, CS, psych, math Help in communication With computers (ASR, TTS) With other humans (MT) Ambitious yet practical

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Goals of NLP Scientific Goal Identify the computational machinery needed for an agent to exhibit various forms of linguistic behavior Engineering Goal Design, implement, and test systems that process natural languages for practical applications

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Applications speech processing: get flight information or book a hotel over the phone information extraction: discover names of people and events they participate in, from a document machine translation: translate a document from one human language into another question answering: find answers to natural language questions in a text collection or database summarization: generate a short biography of Noam Chomsky from one or more news articles

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] 7 General Themes Ambiguity of Language Language as a formal system Rule-based vs. Statistical Methods The need for efficiency

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Ambiguity of language Phonetic [raIt] = write, right, rite Lexical can = noun, verb, modal Structural I saw the man with the telescope Semantic dish = physical plate, menu item → All of these make NLP difficult

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Language as a formal system We can treat parts of language formally Language = a set of acceptable strings Define a model to recognize/generate language Works for different levels of language (phonology, morphology, etc.) Can use finite-state automata, context-free grammars, etc. to represent language

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] Rule-based & Statistical Methods Theoretical linguistics captures abstract properties of language NLP can more or less follow theoretical insights Rule-based: model system with linguistic rules Statistical: model system with probabilities of what normally happens Hybrid models combine the two

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] The need for efficiency Simply writing down linguistic insights isn’t sufficient to have a working system Programs need to run in real-time, i.e., be efficient There are thousands of grammar rules which might be applied to a sentence Use insights from computer science To find the best parse, use chart parsing, a form of dynamic programming

King Faisal University جامعة الملك فيصل Deanship of E-Learning and Distance Education عمادة التعلم الإلكتروني والتعليم عن بعد [ ] بحمد الله