Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 The scale frontier MT & Zaldarriaga, arXiv:0805.4414.

Slides:



Advertisements
Similar presentations
SKADSMTAvA A. van Ardenne SKADS Coördinator ASTRON, P.O. Box 2, 7990 AA Dwingeloo The Netherlands SKADS; The.
Advertisements

21cm cosmology T. Chang, UP, J. Peterson, P. McDonald PRL 100, (2008) UP, L. Staveley-Smith, J. Peterson, T. Chang, MNRAS, 394, 6 (2009)
Multi-Channel Receiver Analyzer Breana Branham in the ASU Low-Frequency Cosmology Laboratory Mentor Professor Judd Bowman Special thanks to Hamdi Mani.
21 cm Cosmology Jeff Peterson, CMU -Existing telescopes and data -Intensity Mapping -Fixed Cylinders.
Cosmology using 21 cm emission Jeff Peterson, CMU Talk 1…Update on early ionization telescopes (LOFAR, PAST, GMRT) Talk 2…Proposed Redshift survey.
Universum Incognita Terra Incognita Cosmic reionization Last frontier in studies of cosmic structure formation = benchmark for formation 1 st galaxies.
Observational techniques meeting #14. Topics for student talks: Cosmic microwave background: history + basic instrumentation CMB: recent developments.
1 hour, 6MHz 18’ resolution DNR ~ 5000 Weakest src ~ 10 Jy CygX G Cygnus A Galactic plane PAPER GB32 at 150MHz AIPS reduction W51 G
Science with SKA:. The SKA will provide continuous frequency coverage from 50 MHz to 14 GHz in the first two phases of its construction. A third phase.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
Precision Array to Probe Epoch of Reionization LUNAR Science Forum, July 2013 C. Carilli* (NRAO) + PAPER Team** *Member of Lunar University Network for.
Radio Telescopes Large metal dish acts as a mirror for radio waves. Radio receiver at prime focus. Surface accuracy not so important, so easy to make.
ASKAP Antenna David DeBoer ASKAP Project Director 06 May 2009.
LOFAR-UK A proposal to STFC PPRP PI Professor Rob Fender (Southampton) On behalf of the following consortium: Liverpool John Moores University, The Open.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
Challenge: Low frequency foreground – hot, confused sky HI 21cm signal ~ 10 mK Foreground: T ~ 100  z)^-2.6 K Highly ‘confused’: 1 source/deg^2.
MWA Project:. Site: Murchison Radio Observatory Australia’s proposed SKA Site Strategy: 512 Antenna “Tiles” Explore “Large N / Small D” regime Correlate.
The Murchison Widefield Array: an SKA Precursor Shep Doeleman - MIT Haystack For the MWA Project.
Matched Filter Search for Ionized Bubbles in 21-cm Maps Kanan K. Datta Dept. of Astronomy Stockholm University Oskar Klein Centre.
Seeing the universe through redshifted 21-cm radiation Somnath Bharadwaj Physics & CTS IIT Kharagpur.
“First Light” From New Probes of the Dark Ages and Reionization Judd D. Bowman (Caltech) Hubble Fellows Symposium 2008.
 Led by Professor Judd Bowman (ASU).  Goal of developing radio instrumentation and conduct astronomical observations to study the evolution of the early.
U.S. Decadal Survey Process Disclaimer: I am one of many participants; it’s complicated; and others involved should speak up. Committee Members: Roger.
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
Yi Mao, MIT Collaborators: Max Tegmark, Alan Guth, Matias Zaldarriaga, Matt McQuinn, Oliver Zahn, Tom Faulkner, Ted Bunn, Serkan Cabi Constraining cosmological.
1 100 SKA stations (2020 ) Projets avec SKA. 2 Telescope Project (~2020) for a giant radiotelescope in the centimetre-metre range one square kilometre.
The Square Kilometer Array: A global project in Radio Astronomy S. Ananthakrishnan NCRA-TIFR, Pune ASET Colloquium; Tata Institute of Fundamental.
SKA Introduction Jan Geralt Bij de Vaate Andrew Faulkner, Andre Gunst, Peter Hall.
The Murchison Wide Field Array Murchison, ~300 km from Geraldton.
Simulations of Beamforming Algorithms Stelio Montebugnoli, IRA-INAF, Medicina (BO), Italy, Giovanni Naldi, IRA-INAF, Medicina.
Which dipoles to use to optimize survey speed? –What tapering? –Trade-off between sensitivity, FOV and low side-lobe levels –Station beam stability, pointing.
Introduction to the Murchison Widefield Array Project Alan R. Whitney MIT Haystack Observatory.
Ionized Neutral Reionized Update: HI 21cm cosmic reionization experiments Chris Carilli (NRAO) MPIA July 2008 Last phase of cosmic evolution to be explored.
21 cm Reionization Forecast and Search at GMRT
Judd D. Bowman Hubble Fellow, Caltech Alan E. E. Rogers Haystack Observatory With support from: CSIRO/MRO and Curtin University Thanks to: The organizers.
THE MURCHISON WIDEFIELD ARRAY: FROM COMMISSIONING TO OBSERVING D. Oberoi 1,2, I. H. Cairns 3, L. D. Matthews 2 and L. Benkevitch 2 on behalf of the MWA.
Russia_2006 Current STELab IPS Heliospheric Analyses STELab interplanetary scintillation (IPS) 327 MHz array near Fuji IPS and SMEI Observation Comparison.
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
LOFAR LOw Frequency Array => most distant, high redshift Universe !? Consortium of international partners… Dutch ASTRON USA Haystack Observatory (MIT)
Centre of Excellence for All-sky Astrophysics MWA Project: Centre of Excellence for All-sky Astrophysics Centre of Excellence for All-sky.
Murchison Widefield Array (MWA) : Design and Status Divya Oberoi, Lenoid Benkevitch MIT Haystack Observatory doberoi, On behalf.
The Mission  Explore the Dark Ages through the neutral hydrogen distribution  Constrain the populations of the first stars and first black holes.  Measure.
ASKAP Update David DeBoer ASKAP Project Director 26 May 2010.
Max Tegmark Dept. of Physics, MIT Cosmologia en la Playa January 11-15, 2010 Measuring cosmological parameters.
Potential of a Low Frequency Array (LOFAR) for Ionospheric and Solar Observations ABSTRACT: The Low Frequency Array (LOFAR) is a proposed large radio telescope.
Review of developments in Australasia and mainland Asia Steven Tingay Swinburne University of Technology Next Generation correlator meeting, JIVE 27 -
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
Observed and Simulated Foregrounds for Reionization Studies with the Murchison Widefield Array Nithyanandan Thyagarajan, Daniel Jacobs, Judd Bowman + MWA.
Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory.
C.Carilli, AUI Board October 2006 ISAC-run three year process: Quantified ‘experiments’ for future large area cm telescopes 50 chapters, 90 authors, 25%
Stephen White Gyroresonance emission in FORWARD & Developments in radio telescopes.
Probing the dark ages with a lunar radio telescope Chris Carilli, Feb 2008 Dark Ages 15 < z < 200 Reionization 6 < z < 15 last phase of cosmic evolution.
Mapping our Universe for Precision Cosmology Max Tegmark, MIT.
Searching for the Synchrotron Cosmic Web with the Murchison Widefield Array Bryan Gaensler Centre for All-sky Astrophysics / The University of Sydney Natasha.
History of IGM bench-mark in cosmic structure formation indicating the first luminous structures Epoch of Reionization (EoR) C.Carilli (NRAO) NNIW Dec.
Upcoming Instruments to Probe Reionization… Frank Briggs ANU.
The Dark Ages and Reionization with 21cm Aaron Parsons.
 History of early Universe; the Epoch of Reionization  Goal: Map the evolution of structure of the early Universe using the Murchison Widefield Array.
Nithyanandan Thyagarajan1, Aaron R. Parsons2,
The Low Frequency Array (LOFAR)
Constraining the redshift of reionization using a “modest” array
IPS and SMEI Observation Comparison
Modern Interferometric Arrays
Cosmology from the Moon?
9/17/2018 Cosmology from Space Max Tegmark, MIT.
Lijo Thomas George, K. S. Dwarakanath
Nithyanandan Thyagarajan (Arizona State University) HERA+, MWA+
Welcome to the 4th NAIC-NRAO School on Single Dish Radio Astronomy
Future Radio Interferometers
Presentation transcript:

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 The scale frontier MT & Zaldarriaga, arXiv:

21 cm tomography experiments: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles GMRT = Giant Metrewave Radio Telescope

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles 21CMA/PaST = Primeval Structure Telescope 21 cm tomography experiments:

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles 21CMA/PaST = Primeval Structure Telescope Figures from Jy Wang

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles LOFAR = Low Frequency ARray 2 Km 100 Km 32 sta. 77 sta. v v v v v v v v 21 cm tomography experiments:

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles MWA = Murchison Widefield Array 21 cm tomography experiments: Pictor A

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles Cas A 3C 392 Cygnus A PAPER = Precision Array to Probe Epoch of Reionization 21 cm tomography experiments:

# of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles PAPER = Precision Array to Probe Epoch of Reionization 21 cm tomography experiments:

Physics of the 21 cm Line: Cylinder Telescope Consortium (Pittsburgh -> Morocco)

Physics of the 21 cm Line: # of Antennas(Total) 30 dishes 10,000 8,19216 (4) # of Antennas(Installed) 30 dishes 2,000 (4 Tiles) 512 (32 Tiles) 8 (0) # of Tiles NA20 (1 Tile=500 ant) 96(1 Tile=16 ant) 512 (1 Tile=16 ant) NA Effective Area (m 2 ) ~ Imaging Field of View 2 o 3 o o ~ 5 o 30 o - 1 o Angular Resolution 3.8 o o 3’ 25” - 3.5” ~ 15’< 0.1’ Frequency Range (MHz) Mapping Sensitivity 15mK/(day) 1/2 Site IndiaChina Netherlands AustraliaUSA/AUSAUS(?) Year (?) Experiment GMRTPAST/21CMA LOFAR MWAPAPERSKA 96 V crossed Dipoles SKA = Square Kilometer Array

Max Tegmark Dept. of Physics, MIT ITP June 21, 2010 Image: FORTE satellite MWA PAST/21CMA LOFARGMRTPAPER SKA ? 21 cm tomography experiments: CYLINDER

Participants: MIT, Harvard, Washington, Berkeley, JPL, NRAO PI: Jacqueline Hewitt, MIT LARC: Lunar Array for Radio Cosmology