Global nuclear structure aspects of tensor interaction Wojciech Satuła in collaboration with J.Dobaczewski, P. Olbratowski, M.Rafalski, T.R. Werner, R.A.

Slides:



Advertisements
Similar presentations
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Advertisements

1 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
Generalized pairing models, Saclay, June 2005 Generalized models of pairing in non-degenerate orbits J. Dukelsky, IEM, Madrid, Spain D.D. Warner, Daresbury,
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Lawrence Livermore National Laboratory UCRL-XXXX Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA This work performed under.
Anatoli Afanasjev Mississippi State University Recent progress in the study of fission barriers in covariant density functional theory. 1. Motivation 2.
Mean-field calculation based on proton-neutron mixed energy density functionals Koichi Sato (RIKEN Nishina Center) Collaborators: Jacek Dobaczewski (Univ.
Tens of MeV + NNN ab initio Intro: effective low-energy theory for medium mass and heavy nuclei  mean-field ( or nuclear DFT )  beyond mean-field.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Towards a Universal Energy Density Functional Towards a Universal Energy Density Functional Study of Odd-Mass Nuclei in EDF Theory N. Schunck University.
Finite Nuclei and Nuclear Matter in Relativistic Hartree-Fock Approach Long Wenhui 1,2, Nguyen Van Giai 2, Meng Jie 1 1 School of Physics, Peking University,
Forces for extensions of mean-field PhD Thesis Marlène Assié Denis Lacroix (LPC Caen), Jean-Antoine Scarpaci (IPN Orsay)  Extensions of mean-field ? 
Neutron Number N Proton Number Z a sym =30-42 MeV for infinite NM Inclusion of surface terms in symmetry.
Single Particle Energies
Application of DFT to the Spectroscopy of Odd Mass Nuclei N. Schunck Department of Physics  Astronomy, University of Tennessee, Knoxville, TN-37996, USA.
Terminating states as a unique laboratory for testing nuclear energy density functional Maciej Zalewski, UW under supervision of W. Satuła Kazimierz Dolny,
+ NNN tens of MeV ab initio Intro: effective low-energy theory for medium mass and heavy nuclei  mean-field ( or nuclear DFT )  beyond mean-field.
XV Nuclear Physics Workshop Kazimierz 2008: "75 years of nuclear fission" Sept. 25, ISTANBUL-06 Kazimierz Dolny, Sept. 25, 2008 Technical.
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
Tens of MeV + NNN ab initio Intro:  define fundaments my model is „standing on” sp mean-field ( or nuclear DFT )  beyond mean-field ( projection.
AUJOURD’ HUI…..et…. DEMAIN Keep contact with experimentalists, work together Beyond mean-field, but via Particle- Vibration Coupling.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
Alex Brown PREX Aug Neutron Radii and the Neutron Equation of State.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Exotic Nuclei in Relativistic and Non-Relativistic Models Exotic Nuclei large isospin asymmetry - nuclei close to the drip lines - superheavy nuclei non-relativistic.
Outline : towards effective superfluid local density approximation (SLDA) - general remarks pairing: volume-, mixed- or surface-type - selectivity/resolution.
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
KITPC, Jun 14th, 2012 Spin-Isospin excitations as quantitative constraint for the Skyrme tensor force Chunlin Bai Department of Physics, Sichuan University.
n-p pairing in N=Z nuclei
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Spectroscopy of Odd-Mass Nuclei in Energy Density Functional Theory Impact of Terascale Computing N. Schunck University of Tennessee, 401 Nielsen Physics,
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
1 Technology to calculate observables Global properties Spectroscopy DFT Solvers Functional form Functional optimization Estimation of theoretical errors.
21 January 2010ITP Beijing1 Neutron star cooling: a challenge to the nuclear mean field Nguyen Van Giai IPN, Université Paris-Sud, Orsay 2.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Kilka słów o strukturze jądra atomowego
Information content of a new observable Witold Nazarewicz University of Aizu-JUSTIPEN-EFES Symposium on "Cutting-Edge Physics of Unstable Nuclei” Aizu-Wakamatsu,
Tailoring new interactions in the nuclear many-body problem for beyond- mean-field models Marcella Grasso Tribute to Daniel Gogny.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
A s an example of probing such valence occupations, here is work done a long time ago. We measured (d,p) cross sections in the 4.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Gross Properties of Nuclei
Sizes. W. Udo Schröder, 2011 Nuclear Spins 2 Intrinsic Nuclear Spin Nuclei can be deformed  can rotate quantum mech.  collective spin and magnetic effects.
Global fitting of pairing density functional; the isoscalar-density dependence revisited Masayuki YAMAGAMI (University of Aizu) Motivation Construction.
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Shalom Shlomo Cyclotron Institute Texas A&M University
The role of isospin symmetry in medium-mass N ~ Z nuclei
Nuclear structure far from stability
Structure and dynamics from the time-dependent Hartree-Fock model
Nuclear Structure and Reactions: Building Together for the Future
Local Density Functional Theory for Superfluid Fermionic Systems
Local Density Functional Theory for Superfluid Fermionic Systems
Technical University Munich
Daisuke ABE Department of Physics, University of Tokyo
Symmetry energy coefficients and shell gaps from nuclear masses
Superheavy nuclei: relativistic mean field outlook
Department of Physics, Sichuan University
Presentation transcript:

Global nuclear structure aspects of tensor interaction Wojciech Satuła in collaboration with J.Dobaczewski, P. Olbratowski, M.Rafalski, T.R. Werner, R.A. Wyss, M.Zalewski Kazimierz Dolny NNN tens of MeV ab initio Principles of low-energy nuclear physics  effective theories Coupling constants & fitting strategies Single-particle fingerprints of tensor interaction - SO splittings & magic gaps Influence of tensor fields on: - nuclear deformability - the total binding energy & S 2n - high-spin (terminating) states Summary

Modern Mean-Field Theory  Energy Density Functional  j, , , J,  T,  s,  F, Hohenberg-Kohn-Sham Effective theories for low-energy nuclear physics:

Fourier local correcting potential hierarchy of scales: 2r o A 1/3 roro ~ 2A 1/3 is based on a simple and very intuitive assumption that low-energy nuclear theory is independent on high-energy dynamics ~ 10 The nuclear effective theory Long-range part of the NN interaction (must be treated exactly!!!) where regularization Coulomb ultraviolet cut-off denotes an arbitrary Dirac-delta model Gogny interaction przykład There exist an „infinite” number of equivalent realizations of effective theories

lim  a a 0 Skyrme interaction - specific (local) realization of the nuclear effective interaction: spin-orbit density dependence 10(11) parameters  | v(1,2) |  Slater determinant (s.p. HF states are equivalent to the Kohn-Sham states) Spin-force inspired local energy density functional local energy density functional relative momenta spin exchange

Symmetric NM: - saturation density ( ~0.16fm -3 ) - energy per nucleon ( MeV) - incompresibility modulus (210 20MeV) + - isoscalar effective mass (0.8) + Asymmetric NM: - isovector effective mass (GDR sum-rule enhancement) - symmetry energy ( 30 2MeV) + - neutron-matter EOS (Wiringa, Friedmann-Pandharipande) Finite, double-magic nuclei [masses,radii, rarely sp levels]: -surface properties -ZOO– 20 parameters are fitted to: density   dependent CC Skyrme-inspired functional is a second order expansion in densities and currents: tensor spin-orbit

m*/m W0W0 SLy4 SLy5 SkP SkXc SkM* SIII SkO experiment std. so 90% so SkP SkO SkXc SkM* MSk1 SLy5 SLy4 SkI1 SIII  e(f 7/2 -f 5/2 ) [MeV] W0W0 W0W  e(d 3/2  f 7/2 ) [MeV] SkP SkM* SkXc SLy4 SkI1 SIII SkO MSk experiment * std. so 90% so scales with W o (two-body SO interaction) Binding energy-dictated fit: superficial m* dependence in the spin-orbit strength: and contradicting scalings in the single-particle splittings scales with W o * (W o * = W o ) m momo *

Fitting strategies of the tensorial coupling constants (I)  e(f 5/2 -f 7/2 ) [MeV] Ca 48 Ca 56 Ni a) b) neutrons protons bare SkO spectra

SkP T T 0 =-39(*5);T 1 =-62(*-1.5);SO*0.8 C1C1 J C0C0 J Ca Ni f 7/2 -f 5/2 p 3/2 -p 1/2 f 7/2 -d 3/ f 7/2 -f 5/2 f 7/2 -d 3/2 from binding energies 48 Ca f 7/2 -f 5/2 f 7/2 -d 3/2 f 7/2 -p 3/2 p 3/2 -p 1/2 Single-particle energies [MeV] Fitting strategies of the tensorial coupling constants (II) 1) Fit of the isoscalar SO strength 48 Ca 56 Ni 40 Ca 2) Fit of the isoscalar tensor strength: 3) Fit of the isovector tensor strength or, more precisely, C 1 J /C 1 j<j< j>j> FF j>j> FF j<j< - the details -  J 48 Ni or 78 Ni are needed in order to fix SO-tensor sector f 7/2 f 5/2 splittings around

OUR VALUES OF COUPLING CONSTANTS: Colo BSF triangle C 1 [MeV fm 5 ] J Brink & C 0 [MeV fm 5 ] J SLy4 SkP SLy5 Skxc SkO’ MSk1 SkO T SLy4 T SkP T Stancu Skxta Skxtb et al. C0∇JC0∇J C0JC0J C1JC1J m* SLy4 SKO SKP SIII SkM* 0,69 0,90 1,00 0,76 0, all CC are in [MeV fm 5 ] „World” CC overview - strategy dependence - Colo et al. PLB646, 227 (2007) C0∇JC0∇J C1∇JC1∇J = 3 Standard: SkO: = -0,78 Brown et al. PRC74, (2006) Brink & Stancu, PRC75, (2007)

M.Zalewski, J.Dobaczewski, WS, T.Werner, PRC77, (2008) Spin-orbit splittings [MeV] SLy4 T T 0 =-45;T 1 =-60; SO*0.65 n 1h1h 1i1i f 7/2 -f 5/2 g 9/2 -g 7/ O 40 Ca 48 Ca 56 Ni 90 Zr 132 Sn 208 Pb p 1h1h f 7/2 -f 5/2 g 9/2 -g 7/2 16 O 40 Ca 48 Ca 56 Ni 90 Zr 132 Sn 208 Pb SLy4 T (I) spin-orbit splittings Selected single-particle fingerprints of tensor interaction:

(II) magic-gap energies Selected single-particle fingerprints of tensor interaction: (III) „Otsuka mechanism”: Neutrons filling j > ’ subshell influence proton s.p. energies: M.Zalewski et al., PRC77, (2008) Otsuka et al., PRL87, (2001); PRL95, (2005)

Z N – d 5/2 32 – f 7/2 p 3/2 56 – g 9/2 d 5/2 90 – h 11/2 f 7/2 total isoscalar Z N isoscvector Z N The tensorial „magic structure” N=Z

Z~14, N~32 Baumann et al. Nature Vol 449, 1022 (2007) 40 Mg, 42 Al Z~32 N~56 Z~56 N~90 known nuclei Tensor forces in neutron rich nuclei

SkO T’’ : C 0  & 0.99C 1  O 40 Ca 48 Ca 56 Ni 80 Zr 90 Zr 100 Sn 132 Sn 208 Pb E TH – E EXP [MeV] E>0 SLy4 SkO T’ SkO T’’ 20 shells SkO T’ : SO reduced by 15% C 0 J =-44.1MeVfm 5 C 1 J =-91.6MeVfm Ca 48 Ca 56 Ni 90 Zr 132 Sn 208 Pb SLy4 SLy4 T SLy4 Tmin E TH – E EXP [MeV] M.Zalewski et al., PRC77, (2008)

Ca 48 Ca 56 Ni Ca 48 Ca 56 Ni  e( f 5/2 - f 7/2 ) [MeV]  e(  f 5/2 -  f 7/2 ) [MeV] bare Polarisation effects in a presence of strong tensor fields SkO versus SkO T’ time-even TE&TO

( ( ) ) A S 2n [MeV]  S 2n [MeV] oxygen SkO SkO T’ AME03 d 5/2 d 3/2 s 1/2 Influence of tensor on two-neutron separation energy in oxygen isotopes

Deformation properties in a presence of strong tensor fields

 E [MeV] tensor spin-orbit deformacja  2 SkO SkO TX SkO T’ f 7/2 f 5/2 p 3/2 neutrons protons 4p-4h [303]7/2 [321]1/2 Nilsson  E tensor [MeV] 22 Rudolph et al. PRL82, 3763 (1999)

SkO SkO TX tensor SkO T’ spin-orbit  E [MeV] 22 80 Zr constrained HFB calculations in spin-saturated 80 Zr

 E = f 7/2 n I max E( ) E( ) - d 3/2 f 7/2 n+1 I max Further tests in simple-situations: terminating states around A~50: across the gap 46 Ti 24 protons neutrons +3/2 +1/2 -1/2 -3/2 +7/2 +5/2 +3/2 +1/2 -1/2 -3/2 -5/2 -7/2 p-h +3  (n=7) f 7/2 d 3/2 00 14  f 7/2 +3/2 +1/2 -1/2 -3/2 d 3/2 +7/2 +5/2 +3/2 +1/2 -1/2 -3/2 -5/2 -7/2 partially f 7/2 (n=6) 20 filled fully 28 cranking: -  j z PRC71, (2005) H.Zduńczuk, W.Satuła, R.Wyss

 E th -  E exp [MeV] Ca 44 Ca 44 Sc 45 Sc 45 Ti 46 Ti 47 V  E th -  E exp [MeV] SIII SkM* SkP SkO SLy4 SLy5 SkXc Spin-orbit and tensor modified parameterizations Standard parameterizations: „spectroscopic-quality” functionals must have large (>0.9) effective mass!!! ~ 20 d 3/2 f 7/2 p-h ~5MeV

SUMMARY & OUTLOOK Simple three-step procedure is proposed in order to fit the SO & tensor CC The method leads to strong attractive tensor fields and week SO potentials:  improvement of the s.p. properties The tensor interaction influences:  binding energies („magic structure”)  S 2n energies  nuclear deformability (novel mechanisms)  high-spin properties in an extremely neat and robust manner... Amenable to further generalizations...

mean-field averaging From two-body, zero-range tensor interaction towards the EDF:

Local Density Functional Theory for Superfluid Fermionic Systems: The Unitary Gas Aurel Bulgac, Phys. Rev. A 76, (2007) ab initio calculations by: Chang & Bertsch Phys. Rev. A76, von Stecher, Greene & Blume, E-print: v1 running coupling constant in order to renormalize.... ultraviolet divergence in pairing tensor