(1/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki PSI tests - Comparator Results Devices under test and beam conditions.

Slides:



Advertisements
Similar presentations
CHAPTER 3: SPECIAL PURPOSE OP-AMP CIRCUITS
Advertisements

January 22, Run IIB Silicon workshop Purdue University Bortoletto Daniela, Bolla Gino, Canepa Anadi Hamamatsu testing I-V characteristics up to 1000V.
The Latchup Monitor System, ESA Meeting, December 9 th 2014 R. Secondo, A Masi, R. Losito, P. Peronnard, R. D’Aguanno, R. Ferraro The Latchup Monitor System,
Measurements on single and poly crystal diamond samples at CERN Luis Fernandez-Hernando Christoph Ilgner Alick Macpherson Alexander Oh Terry Pritchard.
MDT-ASD PRR C. Posch30-Aug-01 1 Radiation Hardness Assurance   Total Ionizing Dose (TID) Change of device (transistor) properties, permanent   Single.
First Proton Irradiation of CMS Sensors W. de Boer, A. Dierlamm, A. Furgeri, E. Grigoriev, F. Hartmann, F. Hauler, L. Jungermann, Ch. Piasecki.
5 th LHC Radiation Day Radiation response of RADMON sensors T. Wijnands (TS/LEA), C. Pignard (TS/LEA) Acknowledgements : UCL Louvain-La-Neuve, PSI Villingen,
Lecture II: Linear Applications of Opamp
Mechanical and fluidic integration of scintillating microfluidic channels into detector system 1 Davy Brouzet 10 th September 2014.
Oliver Bitterling  Introduction to the QPS  Radiation damage in electronic systems  Construction of radiation tolerant systems  Radiation test and.
Diodes Analog Electronics UNIT III. Diodes UNIT I Objective The student will use diodes, capacitors, regulators and LEDs through a rectifying system in.
Characteristics of Op-Amp &
Electronic Devices Ninth Edition Floyd Chapter 13.
COMPONENT TEST H4IRRAD 15 TH NOVEMBER 2011 G. Spiezia, P. Peronnard, G. Foucard, S. Danzeca, P. Gander, E. Fadakis (EN/STI/ECE)
Technologies for a DC-DC ASIC B.Allongue 1, G.Blanchot 1, F.Faccio 1, C.Fuentes 1,2, S.Michelis 1, S.Orlandi 1 1 CERN – PH-ESE 2 UTFSM, Valparaiso, Chile.
J. MEKKI (1/14) 05/12/12 – RadWG meeting Summary of the radiation levels of the equipments at CNRAD RF MosFETs Cryogenics TE/EPC LED warning system BPM.
Introduction to Transistors
B W Kennedy, CCLRC Rutherford Appleton Laboratory VPTs for the CMS experiment B W Kennedy CCLRC Rutherford Appleton Laboratory St Petersburg, 26 April.
Lab #5 Overview Activity #1 - Simulation of an Op-Amp inverting amplifier Activity #2 - Build and Test the Op-Amp inverting amplifier Activity #3 - Determining.
Applications of Semiconductor devices – Amplifiers. Electrical and Electronic Principles.
Status of the PiN diodes irradiation tests B. Abi( OSU), R. Boyd (OU), P. Skubic (OU), F. Rizatdinova (OSU), K.K. Gan (Ohio State U.)
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
Observing the effects of changing tox to the gain of a simple amplifier By R. E. Evans.
Laura Gonella ATLAS-CMS Power Working Group, 08/02/2011
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Birmingham Irradiations and Charge Collection Measurements Anthony Affolder, Paul Dervan The University of Liverpool, UK ATLAS12 Sensor Testing Meeting.
TRAD, Tests & Radiations 13/09/2011 LHC POWER CONVERTER Radiation analysis.
Radiation Test Facilities G. Spiezia. Engineering Department ENEN Radiation tests facilities  Radiation test in the accelerator sector  External facilities.
Presented by: Sergey Volkovich Vladimir Dibnis Fall 2011 Supervisor: Mony Orbach.
Development of DC-DC converter ASICs S.Michelis 1,3, B.Allongue 1, G.Blanchot 1, F.Faccio 1, C.Fuentes 1,2, S.Orlandi 1, S.Saggini 4 1 CERN – PH-ESE 2.
FIPDiag PSI Radiation test Presentation Radwg meeting August 2011 Julien Palluel BE/CO/FE 1 1.Devices Under test 2.Description of the test setup 3.Beam.
P. Denes Page 1 FPPA-Rad1 UHF1x and FPPA Radiation Hardness Radiation studies performed at OPTIS (PSI) with 72 MeV p and at 88” (LBL) with 55 MeV.
BJT (cont’d). OUTLINE – Transconductance – Small-signal model – The Early effect – BJT operation in saturation mode Reading: Chapter
Apr, 2014 TE-EPC-CCE Radiation Tests
Exploitation of Space Ionizing Radiation Monitoring System in Russian Federal Space Agency STRUCTURE OF THE MONITORING SYSTEM The Monitoring System includes.
(1/8) J. Mekki RadWG meeting – 03/02/2015 CHARM facility update 03/02/2015.
1Date 2004 Strictly Confidential Remote Sense (extracted from a presentation by Robert Kollman)
Effects of long term annealing in p-type strip detectors irradiated with neutrons to Φ eq =1·10 16 cm -2, investigated by Edge-TCT V. Cindro 1, G. Kramberger.
Introduction to MicroElectronics
B W Kennedy, CCLRC Rutherford Appleton Laboratory Vacuum Phototriodes for the CMS Electromagnetic Calorimeter Endcaps K.W.Bell, R.M.Brown, D.J.A.Cockerill,
CERN IT Department CH-1211 Genève 23 Switzerland t HP ProCurve 2910 Ethernet switch in CNRAD April-June 2012 RadWG Meeting Gyorgy.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
RESMDD02 July , Florence, A.Singovski, University of Minnesota1 Radiation hardness of the Avalanche Photodiodes for ECAL CMS detector at CERN.
Summary of FPIX tests Tom Zimmerman Fermilab May 16, 2007.
Numerical signal processing for LVDT reading based on rad tol components Salvatore Danzeca Ph.D. STUDENT (CERN EN/STI/ECE ) Students’ coffee meeting 1/3/2012.
R2E Availability October 15 th 2014 Experience from Past LHC and Injector Operation and scaling to the future G. Spiezia.
FE-I4 irradiated chip tests at low temperature M. Menouni, P. Breugnon, A. Rozanov (CPPM - Aix-Marseille Université)
NSS07 1 The HV Protection Boards For The RICH Detectors Of LHCb Claudio Arnaboldi, Tito Bellunato, Paola Gobbo, Davide Luigi Perego and Gianluigi Pessina.
1 Single event upset test of the voltage limiter for the ATLAS Semiconductor tracker TSL Experiment Number: F151 distance between power supplies and modules.
CHAPTER 5 FIELD EFFECT TRANSISTORS(part a) (FETs).
Highlights from rad-hard measurements DC-DCs in different DC-DCs have been tested so far. Three of them are commercial and were released in May.
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 8.
Study of the Radiation Damage of Hamamatsu Silicon Photo Multipliers Wander Baldini Istituto Nazionale di Fisica Nucleare and Universita’ degli Studi di.
Irradiation results of technologies for a custom DC-DC converter F.Faccio, G.Blanchot, S.Michelis, C.Fuentes, B.Allongue, S.Orlandi CERN – PH-ESE.
ET5 June 2007 model answers. A.B A + C S 6 ( 1 0 0) and S 7 ( 1 0 1)
Macom RF switches radiation-test results
DerivFIP – Radiation test
Solid-State Cameras for LHC instrumentation
DR. S. & S. S. GANDHY COLLEGE OF ENGINEERING AND TECHNOLOGY
Michael Steffens, Fraunhofer INT
HEC I chip design Short summary (J.Bán).
Irradiation test of Commercial (BASLER) digital cameras
Electronic Devices Ninth Edition Floyd Chapter 13.
My customer has used TLE2142-Q1 as like below circuits and then they find that the output surge happens when the following conditions. The 5V is supplied.
Introduction to Transistors
Electronic Circuits Laboratory EE462G Lab #6
PSI test REPORT MARCH 2011 G. Spiezia, P. Peronnard (EN/STI/ECE)
EMC problems of DSOI device and circuits
Forward-bias operation of FZ and MCz silicon detectors made with different geometries in view of their applications as radiation monitoring sensors J.
Presentation transcript:

(1/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki PSI tests - Comparator Results Devices under test and beam conditions Schematics Results o Input bias current o Output drift o I-V acquisition of the comparator outputs o Gain o Response time o SET

(2/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Devices under test and beam conditions DUT o LM339D, LP339M and LM139: SET o LM339D and LP339M Input bias measurements o LM339D: Output drift I-V acquisition of the comparator outputs Gain Response time Beam conditions: o PIF facility at PSI Proton energy was set to 230 MeV Dose rate : 7.5 rad/s (270 Gy/h)

(3/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Schematics SET evaluation From literature, the lowest ΔVin gives the highest chance to get SETs

(4/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Schematics Input bias current

(5/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Schematics Output drift / Response time / Gain / I-V measurements 4 kinds of measurements performed: Output drift by applying a constant V(-) during irradiation During test breaks: Gain by applying a saw tooth at V(-) Response time by supplying V(-) with a square wave I-V curves by using a Source Measure Unit (Keithley)

(6/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Input Bias Current 1 st Run Up to 80 Gy Vin > 0 V(-) = 7.5V I(+) = 75 nA → V(+) = 7.5 V At 80 Gy run was stopped Change supply voltage from: +/- 15V to 0/34V LM339D

(7/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Input Bias Current 2 nd Run Vin > 0 V(-) = 17V I(+) = 170 nA → V(+) = 17 V At ≈ 155 Gy → I(+)max is exceeded (250 nA)

(8/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Input Bias Current LP339M At ≈ 57 Gy → I(+)max is exceeded (25 nA)

(9/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Output Drift LM339D Vout init set to –Vcc (-15V) Test break : Other measurements (Gain etc…) Trend of the Vout variation vs dose: Vout tends to lower values From 0 to 300Gy: Vout drifted from: V to V (32 mV) Can be assumed as very small Datasheet affords no information concerning the allowed drift

(10/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki I-V measurements of the comparator outputs LM339D Test break : I-V measurements Source-Measure Unit (Keithley) Inject I and measure Vout

(11/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki I-V measurements of the comparator outputs LM339D A trend of the output is observable: o I-V curves → Lower values of Ic vs Dose Active field of the transistor Breakdown Reasons: o β (output transistor) decreased o Current source is damaged

(12/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Gain Test break : V(-) → Sawtooth waveform ΔV = 10mV V(+) → Ground

(13/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Gain Specifications: Gain min = 50V/mV Gain of the 2 irradiated comparators decrease vs dose Variation of the reference Gain is due to the limited resolution of the scope to measure Vin. The increase of Vin is due to the input offset As dose increases, ΔVin increases to change the output state → Low resolution is less dominant Switching voltage increases with dose.

(14/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Response time A step from -100mV to +100mV was applied on V(-). Results show that response time increases vs dose with respect to the reference: Rising time can be acceptable depending on the application o 50% after a TID of 150 Gy (from 2.1 µs to 3 µs) o 220% after a TID of 300Gy (from 2.1 µs to 4.75 µs)

(15/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Summary of the Results Test typeComparator typeLimit TID (Gy)Corresponding Fluence (p + 230MeV/cm 2 ) Comments/observations Input bias current LM339D1552.9×10 11 Input bias current increases vs TID. LP339M is the more sensitive LP339M561.04×10 11 Gain LM339D ×10 11 Gain decreases vs TID The gain value can be accepted depending on the application I-V curves LM339DNo indication in the Datasheet I-V curves drift to lower values of I as TID increases. β of the output transistor and/or a current source inside the comparator is affected by radiation. Output drift LM339DNo indication in the Datasheet From 0 to 300 Gy Vout drifts by 32mV toward lower values Response time LM339DNo indication in the Datasheet Tr increases vs TID The Tr value can be accepted depending on the application The analysed parameters show a degradation. In some cases the datasheet limit is exceeded

(16/16) 08/05/12 – RadWG meeting G. Spiezia, P. Peronnard, E. Lefteris, P. Oser, J. Mekki Conclusions No SET (>15 ns and > 100 mV) have been observed for any of the DUTs. The analysed parameters show a degradation In some cases the datasheet limit is exceeded as shown in the previous table The degradation can be tolerated depending on the application