Wir schaffen Wissen – heute für morgen Paul Scherrer Institut Preparation of 60 Fe, 44 Ti, 53 Mn, 26 Al and 7/10 Be samples for astrophysical experiments.

Slides:



Advertisements
Similar presentations
1 Neutron Filtered Beam Technique At Kyiv Research Reactor For Scientific And Technological Purposes STCU Workshop "From Science to Business" 11 – 12 October.
Advertisements

Interaction of radiation with matter - 5
Contributions to Nuclear Data by Radiochemistry Division, BARC
Wir schaffen Wissen – heute für morgen 5. Mai 2015PSI,5. Mai 2015PSI, Paul Scherrer Institut Polonium Evaporation Studies from Liquid Metal Spallation.
Lecture 27 Nuclear Reactions Chapter 29.5  29.8 Outline Radioactive Decay Binding Energy Nuclear Reactions.
Neutron activation of materials relevant for GERDA Institut für Kern- und Teilchenphysik March 12th 2009 GERDA-meeting - Padova Alexander Domula.
Yoshitaka FUJITA (Osaka Univ.) Hirschegg Workshop /2006, Jan GT (  ) : Important weak response GT transitions of Astrophysics Interest.
Artificial WHY?? Revision What’s a radionuclide?
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Radionuclide Production
The Nature of Molecules
Recent highlights of isotope research and development at BLIP Dmitri G. Medvedev November 19, 2009.
Measurements of cross-sections of neutron threshold reactions and their usage in high energy neutron measurements Ondřej Svoboda Nuclear Physics Institute,
Data processing in the Activation technique experiment. Making stacked or sandwiched in the repeated order of Al-Cu-Mo. Irradiation of the samples Using.
Towards building a Radionuclide Bank from proton irradiated Hg and Pb-Bi targets Susanta Lahiri and Moumita Maiti Saha Institute of Nuclear Physics, 1/AF.
Nuclear Chemistry. Images elements.html elements.html.
1 JASMIN Activation Experiments (T-972/993/994) Yoshimi Kasugai on behalf of JASMIN Activation team JASMIN Activation team Y. Kasugai, K. Oishi, H. Matsumura,
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Korea Institute of Geoscience and Mineral Resources (KIGAM) Thin Film Analysis by Ion Beam Techniques W. Hong, G. D. Kim, H. J. Woo, H. W.
Neutron-induced reactions Michael Heil GSI Darmstadt Or How can one measure neutron capture cross sections in the keV range on small scale facilities?
Chapter 9 Nuclear Radiation
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Association FZK-Euratom Status of Neutronics Tools & Data for IFMIF-EVEDA U. Fischer, S. Simakov.
CHAPTER 22 Nuclear Chemistry I. The Nucleus (p ) I. The Nucleus (p ) I IV III II Courtesy Christy Johannesson
Studies of neutron cross-sections by activation method in Nuclear Physics Institute Řež and in The Svedberg Laboratory Uppsala and experimental determination.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
Studies of Deuteron and Neutron Cross-sections Important for ADS Research Vladimír Wagner Nuclear physics institute of CAS, Řež, Czech Republic,
JAERI nuclear analyses for IFMIF T. Umetsu, M. Yamauchi and M. Sugimoto Presented by Takeo NISHITANI Japan Atomic Energy Agency (JAEA) IAEA Technical Meeting.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
Slow neutron captures in stars
1 Chapter 9 Nuclear Radiation 9.1 Natural Radioactivity Copyright © 2009 by Pearson Education, Inc.
Cross-sections of Neutron Threshold Reactions Studied by Activation Method Nuclear Physics Institute, Academy of Sciences of Czech Republic Department.
1-1 Lecture 1: RDCH 702 Introduction Class organization §Outcomes §Grading Chart of the nuclides §Description and use of chart §Data Radiochemistry introduction.
Isotope Technologies Garching GmbHCERN 2010 Radiation Protection Aspects Related to Lutetium-177 Use in Hospitals R. Henkelmann, A. Hey, O. Buck, K. Zhernosekov,
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
RADIOISOTOPE PRODUCTION NANIK DWI NURHAYATI,S.SI,M.SI.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
CERN-INTC /INTC-P-415 Tackling the s-process stellar neutron density via the 147 Pm(n,  ) reaction Spokespersons: C. Guerrero (U. Sevilla) and.
Paul Scherrer Institut
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
1-1 Lecture 1: RDCH 702 Introduction Class organization §Outcomes §Grading Chart of the nuclides §Description and use of chart §Data Radiochemistry introduction.
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Neutron production in Pb/U assembly irradiated by deuterons at 1.6 and 2.52 GeV Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech.
PRODUCTION OF RADIONUCLIDE PRODUCTION OF RADIONUCLIDE 2/27/2016 L5,L6 and L7 1 PRINCE SATTAM BIN ABDUL AZIZ UNIVERSITY COLLEGE OF PHARMACY Nuclear Pharmacy.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50 – 400 MeV protons F. Cerutti.
Lecture 4 Production of radionuclides
PIE program of STIP-V tungsten specimens for ESS target engineering
on behalf of the n_TOF Collaboration
S2 SCIENCE CHEMICAL REACTIONS
Fusion Neutronics, Nuclear Data, Design & Analyses
Induced-activity experiment:
Rugard Dressler, Dorothea Schumann
A. Casanovas (UPC), C. Domingo-Pardo (IFIC), C. Guerrero (U
the s process: messages from stellar He burning
Susanta Lahiri and Moumita Maiti Saha Institute of Nuclear Physics,
Cross-section Measurements of (n,xn) Threshold Reactions
Solving CARIBU Open Source Contamination Problems
M-C simulation of reactor e flux;
The neutron capture cross section of the s-process branch point 63Ni
A New Measurement of the Half-Life of 60Fe
Chemistry – Nov 20, 2018 P3 Challenge- Objective –
Letter of Intent: XXXXI
Neutron production in Pb/U assembly irradiated by p+, d+ at 0. 7 – 2
O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová, V. Wagner
Thin Film Analysis by Ion Beam Techniques
Chapter 3, Part2 Nuclear Chemistry CHEM 396 by Dr
Presentation transcript:

Wir schaffen Wissen – heute für morgen Paul Scherrer Institut Preparation of 60 Fe, 44 Ti, 53 Mn, 26 Al and 7/10 Be samples for astrophysical experiments Marin Ayranov, Dorothea Schumann, Rugard Dressler

2 2 OUTLINE  Objectives of ERAWAST  PSI accelerator facilities  Description of the Available Materials  Summary and Outlook  Application Examples 2010 ANS Winter Meeting, Las Vegas 7-11 Nov.

3 3 Objectives of ERAWAST Exotic Radionuclides from Accelerator WAste for Science and Technology 7 Be (53.3d), 10 Be (1.6·10 6 y), 26 Al (7.2·10 5 y), 44 Ti (60.4y), 53 Mn (3.7·10 6 y), 59 Ni (7.5·10 4 y), 60 Fe (2.6 ·10 6 y), 32 Si (172y) 146 Sm (1.03 ·10 8 y), 182 Hf (9 ·10 6 y) Application of exotic long-lived isotopes from accelerator waste  Basic physics research  Geophysics and Astrophysics  Nuclide production facilities  AMS and RIMS measurement groups  Life science and nuclear medicine Difficult, expensive and time consuming production

4 All elements of periodic table with Z ≤ Z target + 1 Production rate Atomic Number Z Spallation Reactions High Energy Accelerator Facilities Cyclotron 590 MeV protons, 3 mA

5 5 Cyclotron: 590 MeV protons 2.2 mA - peak 3 mA Activated parts: SINQ target, BMA-Target, Beam dump, Target E, Shielding etc. Materials: Zirkalloy, Lead, Aluminium, Stainless steel, Copper, Tungsten, Beryllium, Cast iron, Graphite, Concrete, SINQ Cooling Water etc.

6 6 SINQ target STIP 207 Bi, 172 Hf, 173 Lu, 194 Hg, 202 Pb, 205 Pb, 125 Sb, 106 Ru, 44 Ti, 26 Al, 53 Mn Myon production 10 Be Copper beam dump 44 Ti, 53 Mn, 26 Al, 60 Fe, 59 Ni, 32 Si Stainless steel collimator 44 Ti, 26 Al, 53 Mn SINQ cooling water 10 Be

7 SINQ Target Irradiation Program - STIP  Irradiation of samples at special positions V, Mn  Regular production of MBq 44 Ti every two years 2010 ANS Winter Meeting, Las Vegas 7-11 Nov.  350 rods of Pb  SS 316L cladding  specimen rods  Total beam dose 10.3 Ah

8 8  Good Separation from Matrix and Impurities  Selective with High Yield and Carrier-Free Procedure  Simple steps Co-precipitation Solvent extraction Ion exchange  Easy for remote control/automation NI - LabVIEW  Management of the Wastes Acid Liquid Wastes Spent Ion-exchange Resins, Filters etc. Radiochemical Separation Procedure Suitable for Hot Cell Implementation

9 9 Hot-Cell Separation System

10 Summary  Radionuclides separated 7 Be – 10 GBq 10 Be – 50  g 44 Ti – 10 MBq 53 Mn – 2·10 17 atoms 60 Fe – 5·10 16 atoms  Radionuclides available 7 Be – unlimited 10 Be – 100  g 26 Al – 20 kBq (10 18 atoms) 59 Ni – 8 MBq (10 19 atoms) 44 Ti –1 GBq (10 18 atoms) – every two years 53 Mn – 500 kBq (10 19 atoms) – much more available with carrier 60 Fe – 5·10 16 atoms 32 Si – 10 MBq (10 16 atoms)  Possibilities for other irradiation positions (SINQ, beam dumps, collimators)

11 60 Fe half-life and neutron capture cross section Technical University - München, Germany University of Notre Dame – Indiana, USA; GSI Darmstadt; FZK – Karlsruhe, Germany; University of Lodz, Poland; Keele University, United Kingdom

12 60 Fe half-life measurement A - ingrowth of 60 Co N - MC-ICP-MS Phys. Rev. Lett. 103, (2009) T 1/2 = 2.62 ± 0.04 · 10 6 years (1s)

13 60 Fe half-life capture cross section 60 Fe(n,  ) 61 Fe cross kT = 25 keV ‹σ› = 10.2 ± 2.9 syst ± 1.4 stat mbarn ‹σ› = 5.8 mbarn Corrected for the new 60 Fe half life Phys. Rev. Lett. 102, (2009) t 1/2 = 6 min E  = 298, 1027 and 1205 keV I  = 22, 43, 44 % t 1/2 = 1.65 h E  = 67, 909 keV I   85, 4 % Fe Co Ni

14 Explosion mechanism is extremely complex Good diagnostic – 44 Ti Produced in significant quantity Gamma-ray observable – 1157 keV Quantity produced is sensitive to underlying physics 44 Ti abundance determined by only a few key reactions: Triple  40 Ca( ,  ) 44 Ti 44 Ti( ,  ) 48 Cr 44 Ti( ,p) 47 V M1 – The Crab SN1987A Core Collapse Supernovae

15 MC-ICP-MS LSC 10 Be Half-life ICP-MS can measure isotope ratios for the Beryllium isotopes BUT – only one stable Be isotope - 9 Be Second point for mass bias correction - 7 Be quantified by 478 keV gamma line 7 Be (53 d) → 7 Li (stable) ICP-MS in principle possible, but interference with 7 Li, 10 B

16 53 Mn neutrons cross section and half-life determination  Sample material  Copper beam dump, STIP samples, Special irradiation  Sample preparation  Measurements techniques  ICP-MS, AMS, LSC  Cold and ultra cold neutron source Regular 44 Ti production considerable amount of 60 Fe, 53 Mn, 26 Al, 7/10 Be and others available on demand

17

18