Triangles: Trigonometry Right Triangles Trigonometric Ratios Rules.

Slides:



Advertisements
Similar presentations
Unit 2 - Right Triangles and Trigonometry
Advertisements

The Tangent Ratio CHAPTER 7 RIGHT TRIANGLE TRIGONOMETRY.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–3) NGSSS Then/Now New Vocabulary Key Concept: Trigonometric Ratios Example 1: Find Sine, Cosine,
Right Triangle Trigonometry Day 1. Pythagorean Theorem Recall that a right triangle has a 90° angle as one of its angles. The side that is opposite the.
Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz 11.4/5
Click anywhere to begin! By: Marc Hensley Right Triangles and Trigonometry.
Geometry Day 60 Trigonometry II: Sohcahtoa’s Revenge.
Today – Monday, March 4, 2013  Warm Up: Which method to use to solve missing angles or sides of a right triangle  Review: Using inverse trig to find.
MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions Section 2 – Applications of Right Triangles.
TODAY IN GEOMETRY…  Review: Methods solving for missing sides of a right triangle  Learning Target: 7.6 Finding an angle using inverse Trigonometry 
1 Right Triangle Trigonometry Pre-Calculus Day 38.
Solving Right Triangles Given certain measures in a right triangle, we often want to find the other angle and side measures. This is called solving the.
Trigonometry Chapters Theorem.
60º 5 ? 45º 8 ? Recall: How do we find “?”. 65º 5 ? What about this one?
Becky Afghani, LBUSD Math Curriculum Office, 2004 Right Triangles.
ACT Math Practice. Geometry and Trigonometry Placement Tests Primary content areas included in the Geometry Placement Test include: » Triangles (perimeter,
Trigonometry 2 Aims Solve oblique triangles using sin & cos laws Objectives Calculate angles and lengths of oblique triangles. Calculate angles and lengths.
45 ⁰ 45 – 45 – 90 Triangle:. 60 ⁰ 30 – 60 – 90 Triangle: i) The hypotenuse is twice the shorter leg.
Lesson 1: Primary Trigonometric Ratios
Trigonometry. Logarithm vs Natural Logarithm Logarithm is an inverse to an exponent log 3 9 = 2 Natural logarithm has a special base or e which equals.
Geometry Notes Lesson 5.3A – Trigonometry T.2.G.6 Use trigonometric ratios (sine, cosine, tangent) to determine lengths of sides and measures of angles.
Geometry Notes Lesson 5.3B Trigonometry
Which of the following is a step in solving the area of parallelogram? A.) Determine the height and volume B.) Determine the base and perimeter C.)
Geometry One is always a long way from solving a problem until one actually has the answer. Stephen Hawking Today: ACT VOCAB CHECK 8.4 Cont. Practice.
T3.2 - Review of Right Triangle Trigonometry, Sine Law and Cosine Law
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.
MA.912.T.2.1 CHAPTER 9: RIGHT TRIANGLES AND TRIGONOMETRY.
Chapter 8.1 Common Core G.SRT.8 & G.SRT.4 – Use…Pythagorean Theorem to solve right triangles in applied problems. Objective – To use the Pythagorean Theorem.
Solving Right Triangles
Section 7.2 Trigonometric Functions of Acute Angles.
Right Triangle Trigonometry
Unit J.1-J.2 Trigonometric Ratios
Quiz Convert to degrees Convert to radians Arc length = Arc length = inches Radius = Radius = 6 inches What is the angle measure (in radians)?
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 8–3) CCSS Then/Now New Vocabulary Key Concept: Trigonometric Ratios Example 1: Find Sine, Cosine,
Right Triangles & Trigonometry OBJECTIVES: Using Geometric mean Pythagorean Theorem 45°- 45°- 90° and 30°-60°-90° rt. Δ’s trig in solving Δ’s.
Right Triangles and Trigonometry Chapter Geometric Mean  Geometric mean: Ex: Find the geometric mean between 5 and 45 Ex: Find the geometric mean.
$100 $200 $300 $400 $500 $200 $300 $400 $500 Geometric mean Pythagorean Thm. Special Right Triangles Law of Sines and Cosines Trigonometry Angles of.
Chapters 7 & 8 Trigonometry! The study of triangles.
TRIGONOMETRY BASIC TRIANGLE STUDY: RATIOS: -SINE -COSINE -TANGENT -ANGLES / SIDES SINE LAW: AREA OF A TRIANGLE: - GENERAL -TRIGONOMETRY -HERO’S.
TRIGONOMETRY Lesson 1: Primary Trigonometric Ratios.
TRIGONOMETRY Lesson 2: Solving Right Triangles. Todays Objectives Students will be able to develop and apply the primary trigonometric ratios (sine, cosine,
Agenda 1) Bell Work / Homework Check 2) Outcomes 3) Pop Quiz 4) Notes Trig Ratio.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 10 Geometry.
8-4 Trigonometry, day 2 You used the Pythagorean Theorem to find missing lengths in right triangles. Find trigonometric ratios using right triangles. Use.
Chapter 7 Right Triangles and Trigonometry. 7.1 Geometric Mean.
Warm-Up (7 min) Full sentences Start a new page, date on top. Homework can be found on the __________ and the ____________________. Update planner now.
TRIGONOMETRY Lesson 2: Solving Right Triangles. Todays Objectives Students will be able to develop and apply the primary trigonometric ratios (sine, cosine,
Trigonometry Chapters Theorem.
Sine and Cosine Rule- Which One to Use?. Two Sides and Included Angle To find side x, use the …. cosine rule To find angle Y, use the … sine rule 7cm.
List all properties you remember about triangles, especially the trig ratios.
Splash Screen. Then/Now You used the Pythagorean Theorem to find missing lengths in right triangles. Find trigonometric ratios using right triangles.
[8-3] Trigonometry Mr. Joshua Doudt Geometry pg
A Quick Review ► We already know two methods for calculating unknown sides in triangles. ► We are now going to learn a 3 rd, that will also allow us to.
Trigonometric Functions of Angles 6. Trigonometry of Right Triangles 6.2.
How to use sine, cosine, and tangent ratios to determine side lengths in triangles. Chapter GeometryStandard/Goal: 2.2, 4.1.
5-Minute Check 1 Find x and y. A. B. C. D. Starter(s):
We are now going to extend trigonometry beyond right angled triangles and use it to solve problems involving any triangle. 1.Sine Rule 2.Cosine Rule 3.Area.
Pythagorean Theorem c hypotenuse a leg leg b
April 21, 2017 The Law of Sines Topic List for Test
Trigonometry Ratios in Right Triangles
7-6 Sine and Cosine of Trigonometry
MM3 – Similarity of two-dimensional Figures, Right-Angled Triangles
CHAPTER 10 Geometry.
LESSON 8–4 Trigonometry.
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
Trigonometry Ratios in Right Triangles
Right Triangles and Trigonometry
Y. Davis Geometry Notes Chapter 8.
Right Triangle Trigonometry
Presentation transcript:

Triangles: Trigonometry Right Triangles Trigonometric Ratios Rules

Right Triangle Basics Pythagorean Theorem Pythagorean Triples: Trios of Natural numbers that are related by the Pythagorean equality Multiples: Any multiple of a Pythagorean Triple is also a Pythagorean Triple Trigonometric Ratios Inverse Trigonometry

Problem Solving Note: for applied triangle problems such as these, we will use DEGREES to measure angles Minutes and seconds are not in the curriculum Later in the unit, we will discuss RADIANS

Activity Exercise 9.2: 2, 3, 4 Vocabulary: Angles of Depression and Elevation

Triangles: Trigonometry Sine Rule Cosine Rule

New Material Today Trigonometry for triangles that are NOT right triangles Sine Rule (Law of Sines) Cosine Rule (Law of Cosines)

The Sine Rule Useful when an angle and the side opposite that angle are known The numerator/ denominator distinction is not important as long as you are consistent

Sine Rule: Ambiguous Case AC is 17 cm BC is 9 cm Angle A is 29 degrees Solve for all missing sides and angles

Sine Rule: Ambiguous Case AC is 17 cm BC is 9 cm Angle A is 29 degrees Given: angle, opposite and adjacent sides (NOT the sides that form the angle) The two values for the unknown angle are supplementary

Cosine Rule Similar to Pythagorean theorem, with an adjustment for the fact that the triangles are not always RIGHT Note: cos(90) is 0, so the Pythagorean Theorem is a special case

Cosine Rule The cosine rule allows us to find an angle if all sides are known. You need only to solve for angle A, though a formula is given in your formula packet.

Activity 9.5.1: 1-20, multiples of : 1-20, multiples of : 1-20, multiples of 5 Exercise 9.5.6: 2-8, even Skills: Use the Sine Rule and Cosine rules to solve triangles. Identify and solve the ambiguous case. Use trigonometry in context

Triangles: Trigonometry Review of Sine and Cosine Rules Area 3-D Geometry and Trigonometry

Problem(s) of the Day

Today Formula Sheet Reminder, HW Check Review of: Right Angle Trigonometry Sine Rule and Cosine Rule Area of Triangles 3-D Geometry and Trigonometry (Quiz on Tuesday)

Area of a Triangle Given: two sides and the angle they form Use the triangle on the board (and trigonometric ratios) to determine a general formula for the area of a triangle Hint: in the end, you will need to use the “one half base times height” definition

Area of a Triangle If the “height” or altitude is not given Given: two sides and the angle they form

Practice with Area Exercise: 9.4 5, 6, 7 Hint on Parallelograms: Diagonals bisect each other

3-D Trigonometry Look for steps that will allow you to analyze two-dimensional parts of the three-dimensional figure Example 9.3, #1

Practice with 3-D Geometry and Trigonometry Example: 1 Exercise 9.3: 2, 3, 4, 5

Homework 9.3: 2, 3, 4, 5 9.4: 4, 9

Triangles: Trigonometry Review of Mensuration

Problem of the Day From a point A, 150m due south of a tower, the angle of elevation of the top of the tower is 30 degrees. From a point B, due east of the tower, the angle of elevation of the top of the tower is 40 degrees. Draw a diagram (or two) to display this How far apart are points A and B

More 2-D  3-D Geometry Remember your two-dimensional distance and midpoint formulae:

More 3-Dimensional Geometry Here are the distance and midpoint formulae for three dimensions:

Practice with 3-D Coordinate Geometry Find the length and the midpoint of the segment defined by the points C and D.

Quiz Next Class (Tuesday) Print out the formula sheet!!! Pythagorean Theorem, Angle Sums Right Triangle Trigonometry Sine Rule Recognize the ambiguous case Cosine Rule Area of Triangles Basic 3-D Problems

Homework , 14, 18 Challenge: 16 There is a quiz next class. Additional problems may be selected.