M Valisa 1 25 th IAEA FEC, St Petersburg 13-19 Oct 2014 Heavy Impurity Transport in the Core of JET Plasmas M Valisa C Angioni 2, R. Bilato 2, F J Casson.

Slides:



Advertisements
Similar presentations
Glenn Bateman Lehigh University Physics Department
Advertisements

H. Weisen 1 21st IAEA FEC, Chengdu 2006 Peaked Density Profiles in Low Collisionality H-modes in JET, ASDEX Upgrade and TCV H. Weisen, C. Angioni, M. Maslov,
Inter-ELM Edge Profile and Ion Transport Evolution on DIII-D John-Patrick Floyd, W. M. Stacey, S. Mellard (Georgia Tech), and R. J. Groebner (General Atomics)
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
1 G.T. Hoang, 20th IAEA Fusion Energy Conference Euratom Turbulent Particle Transport in Tore Supra G.T. Hoang, J.F. Artaud, C. Bourdelle, X. Garbet and.
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
RFX-mod Workshop – Padova, January Experimental QSH confinement and transport Fulvio Auriemma on behalf of RFX-mod team Consorzio RFX, Euratom-ENEA.
1 Garching, 20/3 2009EFDA Fuelling Meeting A Ekedahl 1, M Goniche 1, G Granucci 2, J Mailloux 3, V Pericoli 4, V Petrzilka 5, K Rantamäki 6, JET-EFDA contributors,
E1/E2 Meeting, 7 April Achievements and open issues in impurity profile control at JET. M. Valisa and Angioni Carraro Coffey Lauro-Taroni Predebon.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
Valisa et al C-mod Ideas Forum, 8 April Electron heating and Ni / Mo Pump Out L Carraro, I Predebon, ME Puiatti, M Valisa ( Consorzio RFX Padova)
TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya , Japan 1.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Max-Planck-Institut für Plasmaphysik ITPA T&C Group meeting, CCFE, He & Impurity transport modelling He & Impurity transport Introduction Remarks.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
October Milano Core-Pedestal Energy Confinement. Empirical Scaling Laws and "stiff" profiles. A. Jacchia 1, F. De Luca 2 1 Consiglio Nazionale.
Self-consistency of pressure profiles in tokamaks Yu.N. Dnestrovskij 1, K.A. Razumova 1, A.J.H. Donne 2, G.M.D. Hogeweij 2, V.F. Andreev 1, I.S. Bel’bas.
1 Plasma Rotation and Momentum Confinement – DB ITPA - 1 October 2007 by Peter de Vries Plasma Rotation and Momentum Confinement Studies at JET P.C. de.
Carine Giroud 1 ITPA Naka Impurity transport at JET On-going analysis from recent campaign C. Giroud, C. Angioni, L. Carraro, P. Belo, I. Coffey,
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
SLM 2/29/2000 WAH 13 Mar NBI Driven Neoclassical Effects W. A. Houlberg ORNL K.C. Shaing, J.D. Callen U. Wis-Madison NSTX Meeting 25 March 2002.
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
S. Coda, MHD workshop, PPPL, 22 Nov Advances in sawtooth control for NTM prevention in JET S. Coda 1, L.-G. Eriksson 2, J. Graves 1, R. Koslowski.
Chalmers University of Technology Simulations of the formation of transport barriers including the generation of poloidal spinup due to turbulence J. Weiland.
Angelo A. Tuccillo EX/ th IAEA Fusion Energy Conference, Vilamoura, 1-6 November 2004 Development on JET of Advanced Tokamak Operations for ITER.
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
ERO modelling of Be erosion and light emission at JET ILW D.Borodin 1, M.Stamp, A.Kirschner 1, C.Björkas 1,2, S.Brezinsek 1, J.Miettunen 3, D.Matveev 1,
TRANSP for core particle transport studies M. Maslov.
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
9 th EU-US Transport Task Force Workshop, Córdoba, Spain, 9-12 September 2002Luca Garzotti1 Particle transport and density profile behaviour on JET L.
M. Greenwald, et al., APS-DPP 2006 Density Peaking At Low Collisionality on Alcator C-Mod APS-DPP Meeting Philadelphia, 10/31/2006 M. Greenwald, D. Ernst,
ContributorsEuratom Associations L. Carraro, M. Mattioli, M.E. Puiatti, P. Scarin, B. Zaniol Consorzio RFX, Padova, Italy P.DuMortier, A. Messiaen, J OngenaEcole.
1 SIMULATION OF ANOMALOUS PINCH EFFECT ON IMPURITY ACCUMULATION IN ITER.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Carine Giroud 1 21st IAEA Fusion Energy, Chengdu Carine Giroud 1 IAEA, Chengdu Progress in understanding impurity transport at JET.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Chalmers University of Technology Simulation of toroidal and poloidal momentum including symmetry breaking toroidal effects J. Weiland 1, P. Mantica 2,
Localised Neutron Emission at the edge of high density JET Trace Tritium - ELMy H-mode plasmas A.Murari 6 on the behalf of G. Bonheure 1, S. Popovichev.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
Impurity transport characterisation JET operational scenarios
Impact of low-Z impurities on the L-H threshold in JET
Compatibility of high performance scenarios with ILW
Pedestal Confinement and Stability in JET-ILW ELMy H-modes
Generation of Toroidal Rotation by Gas Puffing
Finite difference code for 3D edge modelling
Center for Plasma Edge Simulation
ITERに係わる原子分子過程 Atomic and Molecular Processes in ITER SHIMADA, Michiya ITER International Team Annual Meeting of Japan Society of Plasma Science and Nuclear.
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Influence of energetic ions on neoclassical tearing modes
The effect of ELM pacing by vertical kicks on the access to stationary H-mode with H98~1 on JET E. de la Luna 24th.
T. Morisaki1,3 and the LHD Experiment Group
K. Ida1,2, R. Sakamoto1,2, M. Yoshinuma1,2, K. Yamasaki3, T
Stabilization of m/n=1/1 fishbone by ECRH
20th IAEA Fusion Energy Conference,
T. Morisaki1,3 and the LHD Experiment Group
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
EX/6-1 Heavy Impurity Transport in the Core of JET Plasmas
C.Mazzotta Peaked Density Profiles due to Neon Injection on FTU
Presentation transcript:

M Valisa 1 25 th IAEA FEC, St Petersburg Oct 2014 Heavy Impurity Transport in the Core of JET Plasmas M Valisa C Angioni 2, R. Bilato 2, F J Casson 5, L Lauro Taroni 5, P Mantica 3, T Pütterich 2, M Baruzzo 1, P Belo 4, E. Belli 2, I Coffey 6, P Drewelow 2, C Giroud 5, N Hawkes 5, T Hender 5, T Koskela 7, E Lerche 8, C Maggi 2, J Mlynar 9, M O’Mullane 10, T. Odstrcil 2, M Puiatti 1, M Reinke 11, M Romanelli 5 and JET contributors* JET, Culham Science Centre, Abingdon, OX14 3DB, UK 1-Consorzio RFX, Padova, Italy, 2-Max Planck Institut fur Plasmaphysik, Garching, Germany, 3 -Istituto di Fisica del Plasma, CNR, Milano, Italy, 4Instituto de Plasmas e Fusao Nuclear, IST, Lisbon, Portugal, 5CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK, 6Queen’s University, Belfast, UK, 7 Aalto University, Tekes, P.O.Box 14100, FIN Aalto, Finland, 8LPP-ERM-KMS, TEC partner, Brussels, Belgium, 9 IPP.CR, Institute of Plasma Physics AS CR, Prague, Czech Republic, 10 Department of Physics, University of Strathclyde, Glasgow UK, 11Department of Physics, University of York, UK. * See the Appendix of F. Romanelli et al., Proceedings of this conference 25 th IAEA FEC, St. Petersburg, Oct 2014

M Valisa 2 25 th IAEA FEC, St Petersburg Oct 2014 Outline Introduction The analysis tools Results -In both standard H-mode and hybrid scenarios, the path towards W accumulation is determined by the inward neoclassical convection due to density peaking of the main plasma. -ICRH helps hampering W accumulation in the core of standard H-mode plasmas. Summary and conclusion

M Valisa 3 25 th IAEA FEC, St Petersburg Oct 2014 Motivation1: W concentration must be contained JET is studying the impact of a ITER-like wall on the plasma: Be wall and W divertor. W concentration in a reactor must be kept around 10 -5, its production minimized and core accumulation avoided. (W: Z=74, 193 amu; the W cooling rate remains high over a large range of Te T Putterich et al Nucl. Fusion 50 (2010)

M Valisa 4 25 th IAEA FEC, St Petersburg Oct 2014 Motivation 2: W complex behaviour must be understood W density distribution is often highly asymmetric as observed for heavy impurities in many experiments SXR tomography of a JET discharge This sets requirements on the modelling tools, which must include: - 2 dimensional description for both neoclassical and turbulent transport. -Description of the poloidal structure of the equibrium electric potential in presence of centrifugal forces and auxiliary heating L C Ingesson, H Chen, P Helander, et al. PPCF42, 161 (2000). M L Reinke, I H Hutchinson, J E Rice, et al.. PPCF54, (2012).

M Valisa 5 25 th IAEA FEC, St Petersburg Oct 2014 Analysis tools

M Valisa 6 25 th IAEA FEC, St Petersburg Oct 2014 Analysis tools / theory Integrating the parallel force balance equation: the electrostatic potential must include all possible mechanisms affecting it: in our case centrifugal effects and anisotropy heating of minority species with ICRH Poloidal angle Toroidal rotation frequency Major radius Bilato Maj Angioni, NF 54, (2014)

M Valisa 7 25 th IAEA FEC, St Petersburg Oct 2014 Analysis tools / theory Goal of modelling is to compute the flux surface averaged particle fluxes Different time scales  compute turb. and neocl. coefficients separately Reduce sensitivity of turb. transport to gradients using ratios between particle and heat transport channels. Normalize turbulent transport to empirical turbulent component of the power balance heat conductivity C. Angioni et al Nuclear Fusion 2014 at equilibrium stationary, no impurity source

M Valisa 8 25 th IAEA FEC, St Petersburg Oct 2014 Poloidal asymmetries and neoclassical transport Wong PF 87; Fulop Helander PoP 99; M. Romanelli Ottaviani PPCF 98 ; Belli et al PPCF 2014 F ; Angioni and Helander, PPCF 2014 Casson et al tbp on PPCF, fraction of passing particles Asymmetries in the electrostaic potential can strongly affect neoclassical transport

M Valisa 9 25 th IAEA FEC, St Petersburg Oct 2014 Analysis tools: model vs experiment Neoclassical transport: NEO Belli PPCF 2008 and 2012 Turbulent transport: GKW Peeters CPC 09, Casson PoP 10 From the normalized density gradients the impurity densities to be compared with the experiments are derived. W density recovered from SXR tomography, deconvolving W contributon from Bremmstrahlung due to hydrogen-like particles JETTO/SANCO transport code to provide empirical W transport coefficients, and W densities. Based on best matching between synthetic data produced by JETTO and experimental SXR tomography and bolometry. Theory Experiment T. Putterich et al 2012 IAEA FEC., San Diego, EX/P3–15 ] Lauro Taroni L et al st EPS Conf Montpellier, 1, (1994) 102.

M Valisa th IAEA FEC, St Petersburg Oct 2014 Results

M Valisa th IAEA FEC, St Petersburg Oct 2014 Electron density, initially hollow, evolves towards peaked profiles due to NBI core fuelling and Ware pinch. Hybrid** #82722, 1.7 MA, 2T, 16MW NBI ne time three radii: 0, 0.45, r/a P Mantica et al 40th EPS Conf., Helsinky 2013 C Giroud et al 41 st EPS Conf, Berlin 2014 Loarte 2013 Nucl. Fusion The path to W accumulation follows the electron density evolution: Hybrid

M Valisa th IAEA FEC, St Petersburg Oct 2014 Electron density, initially hollow, evolves towards peaked profiles due. NBI core fuelling and Ware pinch. Hybrid** #82722, 1.7 MA, 2T, 16MW NBI SXR LOS Impact parameters 0, 0.2, 0.35 r/a ne time three radii: 0, 0.45, r/a P Mantica et al 40th EPS Conf., Helsinky 2013 C Giroud et al 41 st EPS Conf, Berlin 2014 Loarte 2013 Nucl. Fusion Major radius(m) Height (m) The path to W accumulation follows the electron density evolution: Hybrid

M Valisa th IAEA FEC, St Petersburg Oct 2014 Electron density, initially hollow, evolves towards peaked profiles due. NBI core fuelling and Ware pinch. Hybrid** #82722, 1.7 MA, 2T, 16MW NBI SXR LOS Impact parameters 0, 0.2, 0.35 r/a ne time three radii: 0, 0.45, r/a ne profiles at selected times P Mantica et al 40th EPS Conf., Helsinky 2013 C Giroud et al 41 st EPS Conf, Berlin 2014 Loarte 2013 Nucl. Fusion The path to W accumulation follows the electron density evolution: Hybrid scenario

M Valisa th IAEA FEC, St Petersburg Oct 2014 Electron density, initially hollow, evolves towards peaked profiles due. NBI core fuelling and Ware pinch. Hybrid** #82722, 1.7 MA, 2T, 16MW NBI SXR LOS Impact parameters 0, 0.2, 0.35 r/a ne time three radii: 0, 0.45, r/a ne profiles at selected times P Mantica et al 40th EPS Conf., Helsinky 2013 C Giroud et al 41 st EPS Conf, Berlin 2014 C. Angioni et al Nuclear Fusion 2014 Loarte 2013 Nucl. Fusion The path to W accumulation follows the electron density evolution: Hybrid scenario

M Valisa th IAEA FEC, St Petersburg Oct 2014 The path to W accumulation follows the electron density evolution: Standard H-mode ne time three radii : 0, 0.45, 0.8 r/a Standard H-mode #83351, 2.75 MA, 2.6 T, 17.5 MW NBI, Very similar situation for the standard Hmode. More frequent sawteeth keep the W dynamics lower SXR LOS impact parameters 0, 0.2, 0.35 r/a P Mantica et al 41 st EPS Conf, 2014 Berlin

M Valisa th IAEA FEC, St Petersburg Oct 2014 Model matches well the experiment Hybrid Time 5.9 s Time 7.5 s Center accumulation C. Angioni et al Nuclear Fusion 2014 GKW & NEO JETTO/SANCO Interpreted SXR

M Valisa th IAEA FEC, St Petersburg Oct 2014 Neoclassical transport dominant Convection to diffusion ratios for W as computed by NEO + GKW and by JETTO/SANCO Time 5.9 s C. Angioni et al Nuclear Fusion 2014

M Valisa th IAEA FEC, St Petersburg Oct 2014 MHD and W transport interplay MHD modes have complex interplay with W as they affect also the background kinetic profiles and thus the neoclassical transport drive. Sawtooth crashes clearly help flushing W out of the core. In presence of hollow W densities and peaked main plasma density the onset of an NTM accelerates the accumulation process. They facilitate the drift of W into inner regions where neoclassical inward pinch is particularly strong C. Angioni et al Nuclear Fusion 2014

M Valisa th IAEA FEC, St Petersburg Oct 2014 W transport and ICRH in standard H-mode Effects on background profiles and indirect impact on neoclassical transport of W Direct effects on W transport

M Valisa th IAEA FEC, St Petersburg Oct 2014 Impact of ICRH on kinetic profiles Flatter ne Lower rotation Higher Te Similar Ti 85308: 2.5 MA, 2.7 T, 19MW NBI ONLY 85307: 2.5 MA, 2.7 T, 14.7 MW NBI MW ICRH (H minority)** r/a ** see E Lerche et al. EX/P5-22. F Casson et al tbp on PPCF,

M Valisa th IAEA FEC, St Petersburg Oct 2014 Direct Impact of ICRH on W transport Thermal screening due to minority species temperature gradients Anisotropy heating of minority species In order to match the experiment it is important to add the following mechanisms: from TORIC & SSPQL Bilato Maj Angioni, NF 54, (2014) R. Bilato, M. Brambilla, O. Maj, et al., Nucl. Fusion 51, (2011). F Casson et al tbp on PPCF

M Valisa th IAEA FEC, St Petersburg Oct 2014 Central ICRH helps avoiding accumulation 85308: NBI ONLY 85307: NBI + ICRH Experiment Model Experiment Model Again successful match between theory-based model and expt F Casson et al tbp in PPCF, R Bilato M Brambilla, O. Maj et al., Nucl. Fusion 51, (2011). Includes anisotropy heating of and thermal screen by minority species

M Valisa th IAEA FEC, St Petersburg Oct 2014 Analysis of ICRH effects on W confirmed by LBO injections of Mo Simulation of Mo LBO with theory-based model coefficients fits well experiment in the two cases with and without ICRH. Simulation of two SXR vertical Lines of Sights From central (left ) towards the LFS (with ICRH) (NBI only) ICRH impact on Mo transport

M Valisa th IAEA FEC, St Petersburg Oct 2014 ICRH impact on Mo transport Model-based transport coefficients used in JETTO/SANCO to simulate Mo transient behavior (LBO) (with ICRH) v (m/s) Centrifugal Effects only CF and fast ion effects (NBI only) D (m2/s) Molybdenum

M Valisa th IAEA FEC, St Petersburg Oct 2014 ICRH impact on Mo transport Model-based transport coefficients used in JETTO/SANCO to simulate Mo transient behavior (LBO) (with ICRH) v (m/s) Centrifugal Effects only CF + fast ion effects (NBI only) D (m2/s) v (m/s) Molybdenum Tungsten

M Valisa th IAEA FEC, St Petersburg Oct 2014 Summary and conclusion With advanced theory-based two dimensional transport models the complex behavior of W in the core of JET standard H-mode and hybrid discharges has been understood. The sensitivity to neoclassical transport of W is the main reason for its accumulation in JET discharges characterized by peaked density profiles. Central ICRH hampers W accumulation affecting the main kinetic profiles and the related neoclassical drive but also modifying directly W transport through thermal screening and anisotropy of heated minority species.