Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler,

Slides:



Advertisements
Similar presentations
KATRIN and the Cosmic Neutrino Background Amand Faessler University of Tuebingen Germany Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic:
Advertisements

I want thank Aldo Covello for the 11 Spring Seminars on Nuclear Physics in nice areas of the Sorrento Peninsula and the Islands. I was participating in.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
EXTREME ENERGY COSMIC RAYS AND THE UNIVERSE General scope: a new universe Cosmic rays: facts and puzzles.
Planck 2013 results, implications for cosmology
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Big Bang …..was actually very small and quiet. Atoms are mostly empty space.
Titel The Oldest Memory: The Echo of the Big Bang.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Histoire de l’univers infinite, finite, infinite,.
CMB as a physics laboratory
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
Histoire de l’univers infinite, finite, infinite,.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
X What is the shape of our universe? By Sandro Berndt.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
Quiz 4 Distribution of Grades: No Curve. The Big Bang Hubble expansion law depends on the amount of matter and energy (both are equivalent!) in the Universe;
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
Evolution of the Universe (continued)
The Big Bang Or… The Standard Model. Precepts of the standard model The laws of Physics are the same throughout the Universe. The Universe is expanding.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
The Evolution of the Universe Nicola Loaring. The Big Bang According to scientists the Universe began ~15 billion years ago in a hot Big Bang. At creation.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler,
Early times CMB.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic; Bad Honnef.
Cosmology and Dark Matter II: The inflationary Universe Jerry Sellwood.
Cosmology The Origin, Evolution, and Destiny of the Universe.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Cosmology and Dark Matter I: Einstein & the Big Bang by Jerry Sellwood.
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
Application of neutrino spectrometry
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
The Cosmic Microwave Background
Cosmology -- the Origin and Structure of the Universe Cosmological Principle – the Universe appears the same from all directions. There is no preferred.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
ASTR 113 – 003 Spring 2006 Lecture 12 April 19, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
Dark Matter, Dark Energy
Wilkinson Microwave Anisotropy Probe (WMAP) By Susan Creager April 20, 2006.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Dark Matter in the Universe physics beyond the standard model
Alternative to Big Bang theory: Steady State Cosmology
Amand Faessler, Erice September 2014
The Big Bang The Big Bang
Annihilation (with symmetry breaking) quark soup
Cosmology.
KATRIN: A next generation neutrino mass experiment
Big Bang.
Standard ΛCDM Model Parameters
The Big Bang The Big Bang
Presentation transcript:

Search for the Cosmic Neutrino Background and the Nuclear Beta Decay (KATRIN). Amand Faessler University of Tuebingen Germany Publication: Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic: arXiv: [nucl-th] 20. April 2013 and J. Phys. G38 (2011)

Cosmic Microwave Background Radiation (Photons in the Maximum 2 mm) Decoupling of the photons from matter about years after the Big Bang, when the electrons are captured by the protons and He4 nuclei and the universe gets neutral. Photons move freely.

Penzias and Wilson; BellTelephon Nobel Price 1978 Radiation follows exactly the Planck Black Body formula with T = (6) Kelvin in all directions. Microwave Background Radiation

4 (2002) Temperature-Fluctuations of the Cosmic Microw.-Background: 1/ COBE  WMAP COBE = Cosmic Background Explorer WMAP = Wilkinson Microwave Anisotropy Probe 2001

Planck Satellite Temperature Fluctuations Comic Microwave Background (Release March )

6 Curvature of the Univers flat xxx We know the size of the hot spots.

The Universe is flat. The density has the critical value:  = We can only see till the sphere of the the last photon- electron scattering: ~14 x10 12 light years

Black body radiation. Temperature adjusted (pdg 2012): T=2.7255(6) K Experiment Microwave Background Radiation T = (6) Kelvin

The relative number abundance of the light nuclei formed in the big bang allows to determine the absolute baryon density and relative to the critical density (flat universe).  Baryon =  Baryon /  critical = 0.02h -2 = 0.04 n B = 0.22 m -3 e B = 210 MeV/m -3 h = 0.71 h 2 = 0.5 Hubble-Konstant= H = 100 h [km/(sec Mpc)]  B h 2 = 0.02 h = 0.71

Planck‘s Black Body Radiation

Photons and Neutrinos   e,  W

Decoupling of Photons and Neutrinos from Matter „Re“-combination of Electrons with Protons and  -Particles (1  out of 1.7x10 9 from upper tail)  3000 Kelvin; years after Big Bang; e- + p  neutral Hydrogen-Atom 2e- +   neutral Helium-Atom Photons move freely since 14x10  years. Last sphere of scattering: Radius = 14x10 12 light years. Today T  = (6) Kelvin independent of the direction.

Neutrino Decoupling and Cosmic Neutrino Background For massless  massive Neutrinos:

Temperatures of Photons and Neutrinos Phase Transition: e + + e -   Neutrinos decouple 1 second after Big Bang; T decoupling (Neutrinos) = 1 MeV = Kelvin Photons decouple years after Big Bang; T decoupling (Photons) = 0.3 eV = 3000 Kelvin Entropy ~ g i x T i 3 = g f x T f 3 = const

Neutrino Decoupling and Cosmic Neutrino Background For massless  massive Neutrinos:

Estimate of Neutrino Decoupling Universe Expansion rate: H=(da/dt)/a  Interaction rate:  n e-e+

Neutrino Decoupling   /H = ( k B T/ 1MeV) 3 ~ 1 T(Neutrinos) decoupl ~ 1MeV ~ Kelvin; today: 1.95 K Time after Big Bang: 1 Second T(Photons) decoupling = 3000 Kelvin; today: K Time(Photons) decoupling = years Below T = 1 MeV:

(Energy=Mass)-Density of the Universe log  a(t)~1/T Matter dominated:  ~ 1/a 3 ~ T 3 Dark Energy 1/Temp 1 MeV 1sec  dec. 1 eV 3x10 4 y today 3000 K y  dec. 8x10 9 y  K 1.95 K

Hamburg, March (Bild) Results from Oscillations: No Hierarchy, no absolute Mass Scale Fogli, Lisi, Marrone, Palazzo: Phys. Rev. D86 (2012)

1. The Neutrino Mass from  -Decay: Tranformation from Mass to Flavor Eigenstates

Mass of the Electron Neutrino? Tritium decay (Mainz + Troitsk) With:

Measurement of the upper Limit of the Neutrino Mass in Mainz: m < 2.2 eV 95% C.L. Kurie-Plot Q = keV m 2 >0 m 2 <0 Electron Energy Eur. Phys. J. C40 (2005) 447

Negatives Squares of the Measured Neutrino Masses Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E. W. Otten, J. P. Schall, Th. Thümmler, Ch Weinheimer: Eur. Phys. J. C40 (2005)

2. Neutrino Mass from Astrophysics: Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) h= 0.68 Planck-Satelite2013; H= 100 h [km/(sec*Mpc)]

Fourier Transform of Distance Distribution of Galaxies

 0 = 1.0   = 0.66  b = 0.04 H 0 = 72 n s = 0.94  = Cosmic Background Radiation n S = power index for fluctuations k**n S after inflationary expansion.

 0 = 1.0   = 0.66  b = 0.04 H 0 = 72 n s = 0.94  =

Matter Power Spectrum for  = 0.25

How can one detect the Cosmic Neutrino Background? 1.Anihilation of extreme high energy neutrino with low energy relic neutrino into Z 0 burst. 2. Free floating divided cylinder with neutrino absorber and neutrino non-absorbing material. 3. Electron-Neutrino capture on Tritium.

relic D GZK =50Mpc Neutrino E = 4x(10 21 to ) eV 1. Anihilation of Relic Neutrinos with extreme High Energy Neutrinos > eV Z0Z0 Above GZK Anihilation below Greisen-Zatsepin-Kuzmin Radius of 50 Mpc m  = 1.0 and 0.1 eV

Cosmic Radiation from Z-Burst expected at eV

2. Free magnetic floating cylinder with half  absorbing material Permanent Magnet Superconducting Magnet Cylinder shaped One half  absorbing, the other sterile. Balanced. The system rotates into the neutrino wind. Thomas Müller pointed this out to me. A. Ringwald: arXiv:hep- ph/031157v1; 2003.

3. Search for Cosmic Neutrino Background C B by Beta decay: Tritium Kurie-Plot of Beta and induced Beta Decay: (CB ) + 3 H(1/2 + )  3 He (1/2 + ) + e - Electron Energy 2xNeutrino Masses Emitted electron Q = keV Infinite good resolution Resolution Mainz: 4 eV  m < 2.3 eV Resolution KATRIN: 0.93 eV  m < 0.2 eV 90% C. L. Fit parameters: m 2 and Q value meV Additional fit: only intensity of C B

Search for Cosmic Neutrino Background C B by Beta decay: 187 Re Kurie-Plot of beta and induced beta Decay: (CB ) Re 112 (5/2 + )  Os 111 (1/2 - ) + e - Electron Energy 2xNeutrino Masses Emitted electron Q = keV Infinite good resolution MARE-Genova:  E ~ 11 eV  m ~ 2 eV Milano-Bicocca:  E ~24 eV  m ~ 3-4 eV Fit parameters: m 2 and Q value meV Additional fit: only intensity of C B

37 Solution of the Nuclear Structure Problem: Pairing Quasi-Boson Approximation

Tritium Beta Decay: 3 H  3 He+e - + c e

Neutrino Capture: (relic) + 3 H  3 He + e - 20  g(eff) of Tritium  2x10 18 T 2 -Molecules: N capture(KATRIN) = 1.7x10 -6 n / [year -1 ] Every years a count!! for = 56 cm -3

Beta-Decay Re 112  Os 111 +e - + c e

Capture: e (relic) Re(5/2) +  Os(1/2) - + e grams of AgReO 4  N capture(MARE) = 6.7x10 -8 n / [year -1 ] Every 15 Million years a count!!! Main Contribution:  s(1/2); e -  p(3/2)

Kurie-Plot Electron Energy 2xNeutrino Masses Emitted electron Resolution KATRIN: 0.93 eV  m < 0.2 eV 90% C.L. Fit parameters: m 2 and Q value meV Additional fit: only intensity of C B Problems 1.Number of Events with average Neutrino Density of n e = 56 [ Electron-Neutrinos/cm -3 ] Katrin: 1 Count in Years Gravitational Clustering of Neutrinos!!!??? 2. Energy Resolution (KATRIN)  E ~ 0.93 eV

Gravitational Clustering of Dark Matter and Neutrinos in Galaxies Was kompensiert die Zentrifugalkraft? Dunkle Materie ? Faktum erwartet

Gravitational Clustering of Neutrinos A. Ringwald, Y. Wong: arXiv:hep-ph/ ; solved Vlasov eq. for ; Dark Matter from Navarro et al. Ap J490 (1997) 493 Circles: 1h -1 kpc; Pentagons: 10h -1 kpc; Squares: 100h -1 kpc; Triangles 1000h -1 kpc. h -1 = 2 The solar system is 8 kpc = ly from the galactic center. Virial Mass: M vir = 5v2R/G; v = velocity in sight

Gravitational Clustering of Neutrinos R. Lazauskas, P. Vogel and C. Volpe, J. Phys.g. 35 (2008) ; Light neutrinos: Gravitate only on 50 Mpc (Galaxy Cluster) scale: n / ~ n b / ~ 10 3 – 10 4 ; = cm -3 A.Ringwald and Y. Wong: Vlasov trajectory simulations. Clustering on Galactic Scale possible (30 kpc ) n / = n b / ~ 10 6 ; (R = 30 kpc) N capture(KATRIN) = 1.7x10 -6 n / (year -1 )= 1.7 [counts per year] Effective Tritium Source: 20 microgram  2 milligram N capture(KATRIN*) = 1.7x10 -4 n / (year -1 )= 170 [counts peryear];

How many electrons come out without scattering from a gaseous Tritium source?

(  *d) free = 1/  (e  tritium) Mean free path of e:  = 1/(  *  ) = d free KATRIN Design Report

Gravitational Clustering of Neutrinos R.Lazauskas,P. Vogel and C.Volpe, J. Phys.g. 35 (2008) ; Light neutrinos: Gravitate only on 50 Mpc (Galaxy Cluster) scale: n / ~ n b / ~ 10 3 – 10 4 ; = cm -3 A.Ringwald and Y. Wong: Vlasov trajectory simulations. Clustering on Galactic Scale possible (30 kpc) B.n / = n b / ~ 10 6 ; (R = 30 kpc) N capture(KATRIN) = 1.7x10 -6 n / (year -1 )= 1.7 [counts per year] Effective Tritium Source (~50 cm 2 ): 20 microgram  2 milligram N capture(KATRIN*) = 1.7x10 -4 n / (year -1 )= 170 [counts peryear]; Source Area larger  Magnetic Flux-conservation: Area(Source ~50 cm 2 )*B(Source) = Area(Spectro, 63.6 m 2 ) *B(Spectro, 3 Gauss) B(source) = 3.6*10 4 Gauss; B(Spectro) = 3 Gauss; Area (Spectro)/Area(Source) = B(Source)/B(Spectro) =

3 H-Source, Spectrometer and Detector Magnetic Flux Conservation: Area*Magnetic Field; Electron Momentum p e B(Source) = 3.6*10 4 Gauss Area(Source)~ 50 cm 2 B(Spectro) = 3 Gauss Area(Spectro) = 63.6 m 2 KATRIN Design Report

Gravitational Clustering of Neutrinos R.Lazauskas,P. Vogel and C.Volpe, J. Phys.g. 35 (2008) ; Light neutrinos: Gravitate only on 50 Mpc (Galaxy Cluster) scale: n / ~ n b / ~ 10 3 – 10 4 ; = cm -3 A.Ringwald and Y. Wong: Vlasov trajectory simulations. Clustering on Galactic Scale possible (30 kpc to 1 Mpc) B.n / = n b / ~ 10 6 ; (R = 30 kpc) N capture(KATRIN) = 1.7x10 -6 n / (year -1 )= 1.7 [counts per year] Effective Tritium Source (~50 cm 2 ): 20 microgram  2 milligram N capture(KATRIN*) = 1.7x10 -4 n / (year -1 )= 170 [counts peryear]; Flux-conservation: Area(Source ~50 cm 2 )*B(Source) = Area(Spectro, 63.6 m 2 ) *B(Spectro, 3 Gauss) B(source) = 3.6*10 4 Gauss; B(Spectro) = 3 Gauss; Area (Spectro)/Area(Source) = B(Source)/B(Spectro) =

KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe A giant on trip Hamburg, March

How to increase the counts in the Spectro ? Effective Tritium Source (~50 cm 2 ): 20 microgram  2 milligram N capture(KATRIN*) = 1.7x10 -4 n / (year -1 )= 170 [counts peryear]; Flux-conservation: Area(Source ~50 cm 2 )*B(Source) = Area(Spectro, 63.6 m 2 ) *B(Spectro, 3 Gauss) B(source) = 3.6*10 4 Gauss; B(Spectro) = 3 Gauss; Area (Spectro)/Area(Source) = B(Source)/B(Spectro) = Modify Parameters so to increase the intensity by factor 100: Area(Source ~5000 cm 2 ; d = 80 cm); B(Source 360 Gauss) Condense beam to 8 cm by magnetic field of Gauss. Beat magnetic mirror by accelerating electrons. Area(Spectro, 63.6 m 2 ); B(Spectro 3 Gauss);  E = 0.93 eV Area (Spectro)/Area(Source) = B(Source)/B(Spectro) = 120

Gravitational Clustering of Neutrinos R.Lazauskas,P. Vogel and C.Volpe, J. Phys.g. 35 (2008) ; Light neutrinos: Gravitate only on 50 Mpc (Galaxy Cluster) scale: n / ~ n b / ~ 10 3 – 10 4 ; = cm -3 A. Ringwald and Y. Wong: Vlasov trajectory simulations. Clustering on Galactic Scale possible (30 kpc to 1 Mpc) n / = n b / ~ 10 6 ; (R = 30 kpc) N capture(KATRIN) = 1.7x10 -6 n / (year -1 )= 1.7 [counts per year] Effective Tritium Source: 20 microgram  2 milligram N capture(KATRIN*) = 1.7x10 -4 n / (year -1 )= 170 [counts peryear]; See also: B. Monreal, J. A. Formaggio, Phys. Rev. D80 (2009) „Relativistic cyclotron radiation detection of tritium decay electrons“

Summary 1 The Cosmic Microwave Background allows to study the Universe years after the BB. The Cosmic Neutrino Background 1 sec after the Big Bang (BB).

2xNeutrino Masses Emitted electron Kurie-Plot Electron Energy Summary 2 1.Average Density: n e = 56 [ Electron-Neutrinos/cm -3 ] Katrin: 1 Count in Years Gravitational Clustering of Neutrinos n / < 10 6  1.7 counts per year (2 milligram 3 H  170 per year) 2. Measure only an upper limit of n ENDE