上海天文台 Shanghai Astronomical Observatory 2016-6-12 1 CVN in Chang’e-3 lunar exploration mission ZHENG Weimin Shanghai Astronomical Observatory, Chinese.

Slides:



Advertisements
Similar presentations
Lunar Landing GN&C and Trajectory Design Go For Lunar Landing: From Terminal Descent to Touchdown Conference Panel 4: GN&C Ron Sostaric / NASA JSC March.
Advertisements

Shanghai Astronomical Observatory 2009 East Asia VLBI Workshop1 A few Astronomical Observations of CVN Wang Weihua Shanghai Astronomical Observatory.
Preliminary Results of Laser Ranging to Un-cooperative Targets at Shanghai SLR Station Yang FuMin, Zhang ZhongPing, Chen JuPing, Chen WanZhen, Wu ZhiBo,
1 DSN Network e-VLBI Calibration of Earth Orientation L. D. Zhang a,b, A. Steppe a, G. Lanyi a Presentation at 5-th International e-VLBI Workshop Westford,
The Lunar Reconnaissance Orbiter (LRO) is the first mission in NASA's Vision for Space Exploration, a plan to return to the moon and then to travel to.
Australian Centre for Space Photonics Andrew McGrath Anglo-Australian Observatory.
Space Weather influence on satellite based navigation and precise positioning R. Warnant, S. Lejeune, M. Bavier Royal Observatory of Belgium Avenue Circulaire,
Autonomous Landing Hazard Avoidance Technology (ALHAT) Page 1 March 2008 Go for Lunar Landing Real-Time Imaging Technology for the Return to the Moon Dr.
Communication and Navigation System Doro Gracia Kazuya Suzuki Patrick Zeitouni.
Navigation Systems for Lunar Landing Ian J. Gravseth Ball Aerospace and Technologies Corp. March 5 th, 2007 Ian J. Gravseth Ball Aerospace and Technologies.
Autonomous Robotics Team Autonomous Robotics Lab: Cooperative Control of a Three-Robot Formation Texas A&M University, College Station, TX Fall Presentations.
VieVS User Workshop 14 – 16 September, 2011 Vienna SPACECRAFT TRACKING Lucia Plank.
Lunar Lander Phase B1 p. 0 9 th International Planetary Probe Workshop, Toulouse, June 21 th, 2012 Innovative Visual Navigation Solutions for ESA’s Lunar.
Lunar CRater Observation and Sensing Satellite Project LCROSS Site Selection Workshop Oct , 2006 NASA/ARC, Mountain View, California LCROSS Orbital.
Educator Resources in Space Sciences Caitlin Nolby North Dakota Space Grant Consortium.
CVN software correlator development and its applications Zheng Weimin*, Zhang Juan, Tong Li, Tong Fengxian, Liu Lei, Chen Zhong, Shu Fengchun, Wang Guangli.
Four-way Doppler measurements and inverse VLBI observations
The Sun. OUR STAR 34 Earth days to rotate at Poles 25 Earth days to rotate at Equator.
Exploring Space 1.1 Some space objects are visible to the human eye.
Brief introduction of YINGHUO-1 Micro-satellite for Mars environment exploration J. Wu, G. Zhu, H. Zhao, C. Wang, L. Lei, Y. Sun, W. Guo and S. Huang Center.
Intelligent Robotics Group NASA Ames Research Center Intelligent Robotics Group NASA Ames Research Center Planning for the Mapping and Exploration of Human.
Exploring Space CHAPTER the BIG idea People develop and use technology to explore and study space. Some space objects are visible to the human eye. Telescopes.
Polar Topographic Knowledge Prior to LCROSS Impact David E. Smith 1, Maria T. Zuber 2 1 NASA/Goddard Space Flight Center 2 Massachusetts Institute of Technology.
NASA/NSTA Web Seminar: Mapping the Moon: Simulating LOLA in the Classroom The Search for Lunar Ice LIVE INTERACTIVE YOUR DESKTOP Tuesday, May.
上海天文台 Shanghai Astronomical Observatory e-VLBI Progress in China Zhang Xiuzhong, team of Chinese VLBI Network Shanghai Astronomical Observatory Chinese.
上海天文台 Shanghai Astronomical Observatory Recent VLBI Activities in China Zhi-Qiang Shen (Shanghai Astronomical Observatory) 2009 East Asia VLBI Workshop.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
Science Objectives & Investigation Methodology Life in the Atacama 2005 Science & Technology Workshop January 6-7, 2005 Nathalie A. Cabrol NASA Ames.
E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications.
Pioneer Anomaly Test – Jonathan Fitt 1 Design Assessment of Lunar, Planetary and Satellite Ranging Applied to Fundamental Physics Jonathan Fitt Friday,
ASTROMETRY OBSERVATION OF SPACECRAFT WITH VERY LONG BASELINE INTERFEROMETRY ---- A STEP OF VLBI APPLICATION FOR SPACECRAFT NAVIGATION ---- M.Sekido, R.Ichikawa,H.Osaki,
Radio Astronomy Applications Group Kashima Space Research Center National Institute of Information and Communications Technology EGU2005 GI3-1TH5P-0057.
Planetary Motion By Carol Greco. Why do planets move the around the sun the way they do? First you need to understand that scientists have discovered.
NASA/NSTA Web Seminar: Lunar Exploration: Mapping the Moon LIVE INTERACTIVE YOUR DESKTOP.
RADIO SCIENCE EXPERIMENTS OF JOINT OBSERVATION OF YH-1 AND PHOBOS-GRUNT Jinsong Ping, YH-1 VLBI team & RS team Shanghai Astronomical Observatory, CAS Nandan.
Slide: 1 The first Moscow Solar System Symposium (1M-S3) >> Phobos Digital Terrain Model (DTM)and Coordinate Refinement for Phobos-Grunt Mission Support.
Status and future of East Asia VLBI network H.Kobayashi(NAOJ) East Asia VLBI
Airborne GPS Positioning with cm-Level Precisions at Hundreds of km Ranges Gerald L. Mader National Geodetic Survey Silver Spring, MD National Geodetic.
USGS DIGITAL TERRAIN MODELS AND MOSAICS FOR LMMP M. R. Rosiek, E. M. Lee, E. T. Howington-Kraus, R. L. Fergason, L. A. Weller, D. M. Galuszka, B. L. Redding,
上海天文台 Shanghai Astronomical Observatory 4th IVS General Meeting Spacecraft Tracking with Chinese VLBI Network Xiuzhong Zhang and Chinese VLBI Network Team.
Exploring Space CHAPTER the BIG idea People develop and use technology to explore and study space. Some space objects are visible to the human eye. Telescopes.
Educator Resources in Space Sciences Caitlin Nolby North Dakota Space Grant Consortium.
Astrometric VLBI Observation of Spacecraft with Phase Delay M.Sekido, R.Ichikawa,H.Osaki, T.Kondo,Y.Koyama (National Institute of Information and Communications.
上海天文台 Shanghai Astronomical Observatory VLBI correlators of Shanghai Astronomical Observatory ZHENG Weimin, Zhang Xiuzhong Shanghai Astronomical Observatory,
Interplanetary Lasers Joss Hawthorn, Jeremy Bailey, Andrew McGrath Anglo-Australian Observatory Free space optical communications.
03/6/121 Using the VLBA for Spacecraft Navigation Jonathan Romney National Radio Astronomy Observatory VLBA 10 th Anniversary 2003 June 9 – 12.
THIS IS With Host... Your
Educator Resources in Space Sciences Caitlin Nolby North Dakota Space Grant Consortium.
Pre-decisional – for Planning and Discussion Purposes Only 1 Technology Planning for Future Mars Missions Samad Hayati Manager, Mars Technology Program.
Session Chair: Dr. Sam W. Thurman
A brief introduction to QiTai radio Telescope (QTT)
Ground Station Design and Requirements for Scientific Data Acquisition of DSP Satellites July 5, 2002 Ma Zhongsong CSSAR.
IPS Telescopes in China
VLBI in China and the Collaboration with NL
THIS IS JEEPARTY. THIS IS JEEPARTY With Your Host... Mr. Tubb.
Lunar Reconnaissance Orbiter Camera
Lunar Descent Analysis
The Progress of Seshan VGOS Station Construction
(National Astronomical Observatory of Japan)
NASA Satellite Laser Ranging Moblas 4 Monument Peak, CA LRO and HPWREN Scott Wetzel NASA Satellite Laser Ranging Program Near Earth Networks Programs.
Lunar Reconnaissance Orbiter (LRO)
Shanghai VLBI Center Activities
Recent VLBI Activities at XAO
Technical Considerations on VLBI Astrometry with FAST Zhihan Qian(钱志瀚) and Bo Zhang(张波) Shanghai Astronomical Observatory, CAS Outline Existing VLBI.
Shanghai Institute of Technical Physics , Chinese Academy of Science
Chang’e 4 Mission Chinese Lunar Exploration Program (CLEP)
Planetary Radio Interferometry and Doppler Experiment (PRIDE)
Public Engagement Lead LRO and SAM
Chang’e 5 Mission Chinese Lunar Exploration Program (CLEP)
APOLLO SCENE SETTING.
Presentation transcript:

上海天文台 Shanghai Astronomical Observatory CVN in Chang’e-3 lunar exploration mission ZHENG Weimin Shanghai Astronomical Observatory, Chinese Academy of Sciences 3rd International VLBI Technology Workshop Nov 11, 2014, Groningen, Netherlands

上海天文台 Shanghai Astronomical Observatory 2 1.Chang’E-3 overview 2.CVN in Chang’E-3 mission 3.Orbit and position determination 4.Summary Outline

上海天文台 Shanghai Astronomical Observatory The China’s Lunar Exploration Program (CLEP) 3 phases: Orbiting : Chang'e 1 (CE-1), 2007 CE-2, 2010 Landing : CE-3, CE-4 (2013~2016) Sample return : CE-5T1, CE-5, CE

上海天文台 Shanghai Astronomical Observatory CE-1 established CVN Infrastructure CVN near real-time data flow in CE-1

上海天文台 Shanghai Astronomical Observatory 5 CE-1 CE-2 A. Direct insertion of the 100km lunar orbit after braking New Challenge of CE-3 mission CE-1 CE-2

上海天文台 Shanghai Astronomical Observatory 6 B. Powered descent procedure

上海天文台 Shanghai Astronomical Observatory 7 C. Lander and rover moon surface positioning

上海天文台 Shanghai Astronomical Observatory 8 1.Chang’E-3 overview 2.CVN in Chang’E-3 mission 3.Orbit and position determination 4.Summary Outline

上海天文台 Shanghai Astronomical Observatory New Requirements & techniques of CVN 1.High accuracy 2.Real time ability 3.Accurate Moon surface positioning ( X band ΔDOR ) DOR – Differential of One-way Range ( e-VLBI + real time data process ) ( SBI ) SBI – Same Beam VLBI

上海天文台 Shanghai Astronomical Observatory Mission Requirements on VLBI 1.Earth-Moon transfer orbit phase & Circumlunar phase  ΔDOR tracking group delay < 4ns (Actuality <0.5ns)  Orbit & angular determination and orbit prediction ;  Data processing delay < 1minute (Actuality 15~40 seconds) 2.Lunar surface working phase  Lander & Rover tracking by SBI  Lander 3D position <1km (Actuality <100m )  Rover relative position of the lander <500m (Actuality ~1m )

上海天文台 Shanghai Astronomical Observatory 11 CVN upgrade 1.New VLBI data center 2.Shanghai Tianma 65m radio telescope 3.New X-band receiver & digital terminal

上海天文台 Shanghai Astronomical Observatory ΔDOR improves VLBI delay precision Kroger et al Five-minute scan sequence: Quasar-CE3-Quasar-CE3 Angular distance between CE-3 and Quasar < 10° Remove media & system errors

上海天文台 Shanghai Astronomical Observatory 13 CE-3 DOR Spectrum Frequency span = 38.4MHz, X band

上海天文台 Shanghai Astronomical Observatory CVN data center structure

上海天文台 Shanghai Astronomical Observatory Realtime VLBI 15 Processing time distribution plan :

上海天文台 Shanghai Astronomical Observatory Actual data turn around is 15~40 seconds

上海天文台 Shanghai Astronomical Observatory Residual statistics  VLBI group delay residuals : ~ 1ns in trans-lunar orbit ~ 0.5ns in lunar orbit.

上海天文台 Shanghai Astronomical Observatory 18 1.Chang’E-3 overview 2.CVN in Chang’E-3 mission 3.Orbit and position determination 4.Summary Outline

上海天文台 Shanghai Astronomical Observatory  100×100km circumlunar orbit accuracy: 20m  100×15km circumlunar orbit :30m  Descent trajectory: < 100m Orbit determination results 19

上海天文台 Shanghai Astronomical Observatory Position determination results 20 Long. (°)Lat. (°) Elev. (m) VLBI NASA Position Difference 17m 24m8m  Get Lander position in 30 minutes after soft landing  3D Lander position difference between by LRO (Lunar Reconnaissance Orbiter, NASA) and VLBI < 50m Lander Rover

上海天文台 Shanghai Astronomical Observatory 21 Rover positioning by same-beam VLBI 1.VLBI group delay, near real time 2.VLBI Same beam phase reference image, postprocess 3.VLBI phase delay, postprocess

上海天文台 Shanghai Astronomical Observatory Null test by same beam phase reference image positioning Local coordinateNorthEastDownDistance Same-beam phase- referencing VLBI result True value Differences Null test error: ~ 0.6 m

上海天文台 Shanghai Astronomical Observatory Rover A B C D E E17

上海天文台 Shanghai Astronomical Observatory Rover position ( 4 ways ) Site Visual/ Inertial navigation VLBI group delay VLBI phase delay VLBI phase reference map A N E B N E C N E D N E E N m E E17 N-11.83/ / E-13.05/ /

上海天文台 Shanghai Astronomical Observatory 25 1.Chang’E-3 overview 2.CVN in Chang’E-3 mission 3.Orbit and position determination 4.Summary Outline

上海天文台 Shanghai Astronomical Observatory Summary ( 1 ) Real-time and high accuracy VLBI has demonstrated it ability and played an important role in CE-3 Mission. ( 2 ) The lander position accuracy better than 100m. ( 3 ) The Yutu Rover relative position accuracy is ~ 1 m. ( 4 ) Fast ΔDOR and same beam VLBI hope to be used in the CE-5 rendezvous and docking and the Martian Lander / Rover tracking.

上海天文台 Shanghai Astronomical Observatory Thank you for your attention!