Artificial Variable Technique (The Big-M Method) ATISH KHADSE.

Slides:



Advertisements
Similar presentations
February 14, 2002 Putting Linear Programs into standard form
Advertisements

1. Set up the phase 1 dictionary for this problem and make the first pivot: Maximize X 1 + X X 3 + X 4 subject to -X 1 + X X 4 ≤ -3 -X 1 +
Chapter 5: Linear Programming: The Simplex Method
Lecture 3 Linear Programming: Tutorial Simplex Method
Operation Research Chapter 3 Simplex Method.
Linear Programming – Simplex Method
SIMPLEX METHOD FOR LP LP Model.
LECTURE 14 Minimization Two Phase method by Dr. Arshad zaheer
Chapter 6 Linear Programming: The Simplex Method
Dr. Sana’a Wafa Al-Sayegh
Degeneracy and the Convergence of the Simplex Algorithm LI Xiao-lei.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Linear Inequalities and Linear Programming Chapter 5
The Simplex Method: Standard Maximization Problems
5.4 Simplex method: maximization with problem constraints of the form
The Simplex Algorithm An Algorithm for solving Linear Programming Problems.
Operation Research Chapter 3 Simplex Method.
1 Linear programming simplex method This presentation will help you to solve linear programming problems using the Simplex tableau.
Minimization by Dr. Arshad zaheer
Solving Linear Programs: The Simplex Method
1 5.6 No-Standard Formulations  What do you do if your problem formulation doeshave the Standard Form?  What do you do if your problem formulation does.
Linear Programming (LP)
5.6 Maximization and Minimization with Mixed Problem Constraints
D Nagesh Kumar, IIScOptimization Methods: M3L4 1 Linear Programming Simplex method - II.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
LINEAR PROGRAMMING SIMPLEX METHOD.
Learning Objectives for Section 6.2
1. The Simplex Method.
Chapter 6 Linear Programming: The Simplex Method
The Two-Phase Simplex Method LI Xiao-lei. Preview When a basic feasible solution is not readily available, the two-phase simplex method may be used as.
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
8. Linear Programming (Simplex Method) Objectives: 1.Simplex Method- Standard Maximum problem 2. (i) Greedy Rule (ii) Ratio Test (iii) Pivot Operation.
Simplex Algorithm.Big M Method
Chapter 6 Linear Programming: The Simplex Method Section 2 The Simplex Method: Maximization with Problem Constraints of the Form ≤
This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to two  constraints.
ECE 556 Linear Programming Ting-Yuan Wang Electrical and Computer Engineering University of Wisconsin-Madison March
Topic III The Simplex Method Setting up the Method Tabular Form Chapter(s): 4.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.4 The student will be able to set up and solve linear programming problems.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming: The Simplex Method Chapter 5.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
The Simplex Method Updated 15 February Main Steps of the Simplex Method 1.Put the problem in Row-Zero Form. 2.Construct the Simplex tableau. 3.Obtain.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Public Policy Modeling Simplex Method Tuesday, October 13, 2015 Hun Myoung Park, Ph.D. Public Management & Policy Analysis Program Graduate School of International.
The big M method LI Xiao-lei.
Simplex Method Adapting to Other Forms.  Until now, we have dealt with the standard form of the Simplex method  What if the model has a non-standard.
Solving Linear Programming Problems: The Simplex Method
Business Mathematics MTH-367 Lecture 15. Chapter 11 The Simplex and Computer Solutions Methods continued.
1 5.7 Initialization Revisited  :  Motivation: a solution for the transformed system is feasible for the original system if and only if all the. a solution.
Chapter 6 Linear Programming: The Simplex Method Section 3 The Dual Problem: Minimization with Problem Constraints of the Form ≥
Mechanical Engineering Department 1 سورة النحل (78)
1 1 Slide © 2005 Thomson/South-Western Linear Programming: The Simplex Method n An Overview of the Simplex Method n Standard Form n Tableau Form n Setting.
Chapter 4 Linear Programming: The Simplex Method
Chapter 6 Linear Programming: The Simplex Method Section 4 Maximization and Minimization with Problem Constraints.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 6.3 The student will be able to formulate the dual problem. The student.
OR Chapter 8. General LP Problems Converting other forms to general LP problem : min c’x  - max (-c)’x   = by adding a nonnegative slack variable.
An-Najah N. University Faculty of Engineering and Information Technology Department of Management Information systems Operations Research and Applications.
Simplex Method Simplex: a linear-programming algorithm that can solve problems having more than two decision variables. The simplex technique involves.
1 Simplex algorithm. 2 The Aim of Linear Programming A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear.
Decision Support Systems INF421 & IS Simplex: a linear-programming algorithm that can solve problems having more than two decision variables.
(iii) Simplex method - I D Nagesh Kumar, IISc Water Resources Planning and Management: M3L3 Linear Programming and Applications.
The Simplex Method. and Maximize Subject to From a geometric viewpoint : CPF solutions (Corner-Point Feasible) : Corner-point infeasible solutions 0.
Stat 261 Two phase method.
The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving.
10CS661 OPERATION RESEARCH Engineered for Tomorrow.
Linear programming Simplex method.
Chapter 4 Linear Programming: The Simplex Method
Linear programming Simplex method.
Presentation transcript:

Artificial Variable Technique (The Big-M Method) ATISH KHADSE

Big-M Method of solving LPP The Big-M method of handling instances with artificial variables is the “commonsense approach”. Essentially, the notion is to make the artificial variables, through their coefficients in the objective function, so costly or unprofitable that any feasible solution to the real problem would be preferred....unless the original instance possessed no feasible solutions at all. But this means that we need to assign, in the objective function, coefficients to the artificial variables that are either very small (maximization problem) or very large (minimization problem); whatever this value,let us call it Big M. In fact, this notion is an old trick in optimization in general; we simply associate a penalty value with variables that we do not want to be part of an ultimate solution(unless such an outcome Is unavoidable).

Indeed, the penalty is so costly that unless any of the respective variables' inclusion is warranted algorithmically, such variables will never be part of any feasible solution. This method removes artificial variables from the basis. Here, we assign a large undesirable (unacceptable penalty) coefficients to artificial variables from the objective function point of view. If the objective function (Z) is to be minimized, then a very large positive price (penalty, M) is assigned to each artificial variable and if Z is to be minimized, then a very large negative price is to be assigned. The penalty will be designated by +M for minimization problem and by –M for a maximization problem and also M>0.

Example: Minimize Z= 600X X 2 subject to constraints, 2X 1 + X 2 >or= 80 X 1 +2X 2 >or= 60 and X 1,X 2 >or= 0 Step1: Convert the LP problem into a system of linear equations. We do this by rewriting the constraint inequalities as equations by subtracting new “surplus & artificial variables" and assigning them zero & +M coefficientsrespectively in the objective function as shown below. So the Objective Function would be: Z=600X X 2 +0.S 1 +0.S 2 +MA 1 +MA 2 subject to constraints, 2X 1 + X 2 -S 1 +A 1 = 80 X 1 +2X 2 -S 2 +A 2 = 60 X 1,X 2,S 1,S 2,A 1,A 2 >or= 0

Step 2: Obtain a Basic Solution to the problem. We do this by putting the decision variables X 1 =X 2 =S 1 =S 2 =0, so that A 1 = 80 and A 2 =60. These are the initial values of artificial variables. Step 3: Form the Initial Tableau as shown.

It is clear from the tableau that X 2 will enter and A 2 will leave the basis. Hence 2 is the key element in pivotal column. Now,the new row operations are as follows: R 2 (New) = R 2 (Old)/2 R 1 (New) = R 1 (Old) - 1*R 2 (New)

It is clear from the tableau that X 1 will enter and A 1 will leave the basis. Hence 2 is the key element in pivotal column. Now,the new row operations are as follows: R 1 (New) = R 1 (Old)*2/3 R 2 (New) = R 2 (Old) – (1/2)*R 1 (New)

Since all the values of (C j -Z j ) are either zero or positive and also both the artificial variables have been removed, an optimum solution has been arrived at with X 1 =100/3, X 2 =40/3 and Z=80,000/3.