The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, 2011 32 International.

Slides:



Advertisements
Similar presentations
Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
Status of the ANTARES Neutrino-Telescope Alexander Kappes Physics Institute University Erlangen-Nuremberg for the ANTARES Collaboration WIN´05, 6.–11.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
Sebastian Böser Acoustic test setup at south pole IceCube Collaboration Meeting, Berkeley, March 2005.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
Tunka-133: results and status L.A.Kuzmichev (MSU SINP) On behalf of the Tunka Collaboration th ECRS, MOSCOW.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Байкальский нейтринный эксперимент Г.В.Домогацкий 1 23 декабря 2009г. Москва.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
Digital & Analog electronics for an autonomous, deep-sea Gamma Ray Burst Neutrino prototype detector K. Manolopoulos, A. Belias, E. Kappos, C. Markou DEMOKRITOS.
A Prototype Device for Acoustic Neutrino Detection in Lake Baikal Institute for Nuclear Research, Russia, 60th October Anniversary pr.7a,Moscow
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
A Device for Detection of Acoustic Signals from Super High Energy Neutrinos Presenter: Presenter: G.L.Pan'kov Applied Physics Institute of Irkutsk State.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
Status of Detector Characterization a.k.a. Calibration & Monitoring Project Year 2 objectives ( → Mar ‘04) 1. Calibration plan (first draft in March.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
The Tunka-133 EAS Cherenkov light array: status 2011 N.Budnev, Irkutsk State University, on behalf of the Tunka Collaboration.
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Status of the Baikal-GVD experiment
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
Pasquale Migliozzi INFN Napoli
Robert Lahmann VLVnT – Toulon – 24-April-2008
Data acquisition system for the Baikal-GVD neutrino telescope
An expected performance of Dubna neutrino telescope
Baikal-GVD (technical report)
A new 1 km2 EAS Cherenkov Array in the Tunka Valley
Hellenic Open University
Presentation transcript:

The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International Cosmic Ray Conference 1

A.V. Avrorin 1, V. M. Aynutdinov 1, I. A. Belolaptikov 3, D. Yu. Bogorodsky 2, V.B. Brudanin 3, N. M. Budnev 2, I. A. Danilchenko 1, G. V. Domogatsky 1, A. A. Doroshenko 1, A. N. Dyachok 2, Zh.-A. M. Dzhilkibaev 1, S. V. Fialkovsky 5, O. N. Gaponenko 1, K. V. Golubkov 3, O. A. Gress 2, T. I. Gress 2, O. G. Grishin 2, A.M. Klabukov 1, A. I. Klimov 8, K.V. Konishchev 3, A.V. Korobchenko 2, A. P. Koshechkin 1, F.K. Koshel 1, V.A.Kozhin 4, V. F. Kulepov 5, D. A. Kuleshov 1, L. A. Kuzmichev 4, V. I. Ljashuk 1, S. P. Mikheev j, M. B. Milenin 5, R. A.Mirgazov 2, E. R. Osipova 4, A. I. Panfilov 1, A.L. Pan’kov 2, L.V. Pan’kov 2, A.A.Perevalov 2, D.A.Petukhov 1, E.N.Pliskovsky 3, V. A. Poleshchuk 2, E. G. Popova 4, M. I. Rozanov 7, V. F. Rubzov 2, E. V. Rjabov 2, A. V. Shirokov 4, B. A. Shoibonov 3, A. A. Sheifler 3, A.V. Skurikhin 4, Ch. Spiering 6, O. V. Suvorova 1, B. A. Tarashchansky 2, A. S. Yagunov 2, A. V. Zagorodnikov 2, V. A. Zhukov 1, and V.L. Zurbanov 2 1 Institute for Nuclear Research, Moscow, Russia 2 Irkutsk State University, Irkutsk, Russia 3 Joint Institute for Nuclear Research, Dubna, Russia 4 Institute of Nuclear Physics, Moscow State University, Moscow, Russia 5 Nizhni Novgorod State Technical University, Nizhni Novgorod, Russia 6 DESY, Zeuthen D-15738, Germany 7 St. Petersburg State Marine Technical University, St. Petersburg, Russia 8 Russian Research Center Kurchatov Institute, Moscow, Russia 2

1.Introduction 2.Baikal Neutrino Experiment - overview 3.Future Gigaton Volume Detector in Lake Baikal (BAIKAL-GVD ) - GVD technical design - Prototype GVD string: Prototype GVD cluster: Plans 5. Summary 3

A N N KM3NeT IceTop: 81 stations IceCube array: 86 strings, 5160 OM IceCub e NT200+ NEUTRINO TELESCOPES ANTARES 12 strings, 885 OM 11 strings, 228 OM Baikal-GVD project 96 strings, 2304 OM 4

5 Baikal, nm Absorption cross section, m -1 Scattering cross section, m -1 Shore cable mounting Deployment 1370 m maximum depth. Distance to shore ~4 km No high luminosity bursts from biology. Deployment simplicity (ice as a deployment platform). The BAIKAL Site Baikal water properties: Abs.Length: 22 ± 2 m Scatt.Length: m Lake Baikal, Siberia

Central part - NT200 8 strings (192 optical modules ) Height x  = 70m x 40m, V inst =10 5 m 3 Effective area: 1 TeV~2000m² Eff. shower volume: 10 TeV~ 0.2 Mton NT200+ = NT outer strings 228 optical modules Height x  = 210m x 200m, V inst = 4  10 6 m 3 Eff. shower volume: 10 4 TeV ~ 10 Mton Status of Baikal experiment ~ 3.6 km to shore, 1070 m depth NT200+ is operating now in Baikal lake The Baikal collaboration follows since several years a R&D program for a kilometer-scale Gigaton Volume Detector in Lake Baikal (BAIKAL-GVD). The main scientific goal of GVD is to map the high-energy neutrino sky in the Southern Hemisphere including the region of the galactic centre. 6

String section, 12 OM R ~ 60 m L~ 350 m Optimization Basic simulation parameters: Z - the vertical distance between OMs R - the distance between strings and cluster center H - the distance between cluster centers. Trigger conditions Hardware trigger: coincidences of nearby OM (threshold 0.5&3 p.e.). Software selection: muons – 6 triggered channels at 3 strings; cascades – 4 channels at 3 strings. An optimum for cascade detection volume and muon effective area: H=300 m, R=60 m, and Z=15 m Eff. cascade volume (trigger level) : V eff ~0.3–0.8 km 3, δ(lgE) ~0.1,  θ med ~ 3 o - 7 o (E>50TeV) Eff. muon area (trigger level): S eff ~ 0.2 – 0.5 km 2,  θ med ~ 0.5 o - 1 o (E: 10TeV - 1PeV) BAIKAL-GVD Layout 96 Strings × 24 OM String: 2 Sections × 12 OM Clusters  8 strings 2304 Optical Modules 7 12 clusters of strings 1 km

String section – low level DAQ unit Section: 12 Optical Modules & Central Module Glass pressure sphere VITROVEX (17”) OM electronics: Amplifier, HV DC-DC, OM controller Mu-metal grid PMT R7081HQE : D=10”, ~0.35QE Elastic gel 2 on-board LED flashers: 1…10 8 pe., 430 nm, 5 ns Optical Module 3 ADC boards:12 FADC channels, 200 MHz 1 OM slow-control board - Data communication between OM and CM via an underwater RS-485 bus - OM power control. 1 Master board - Trigger logic - Data readout from ADC boards - Connection via local Ethernet to the cluster DAQ center (DSL-modem, 1.2 km cable, 8 Mb ). 8

XP1807 R8055 R7081HQE R8055 BAIKAL-GVD prototype strings: in-situ tests 2009, 2010 Time parameter estimations Tests with LED LED flasher produces pairs of delayed pulses. Light pulses are transmitted to each optical module (channel) via individual optical fibers. Time between pulses dT are calculated from the waveform data. Time resolution:  (dT) = 1.6 ns Tests with LASER  T = dT EXPECTED = (r 2 -r 1 )  c water dT LASER - time difference between two channels measured for Laser pulses. LASER 110 m OM#7 OM#8 OM#9 OM#10 OM#11 OM#12 OM#1 OM#2 OM#3 OM#4 OM#5 OM#6 97 m r1r1 r2r2 Time error:  T ~ 2 ns 9

BAIKAL-GVD prototype cluster: 2011 In April 2011, a prototype cluster of GVD has been installed near NT200+ and commissioned in Lake Baikal. The cluster consists of 3 vertical strings with 8 optical modules each, deployed at depths between 1205 m and 1275 m. The vertical spacing between OMs is 10 m and the horizontal distance between strings is about of 40 m Sketch of prototype cluster, neutrino telescope NT200+, and communication lines locations. 10

Cluster technical design Optical modules The OMs house photomultipliers of different types: 16 PMT R7081HQE (Hamamatsu 10”) 5 PMT R8055 (Hamamatsu 13”) 3 PMT XP1807 (Photonis 12”) Strings 8 optical modules Central module (CM) with 8 FADC channel: 200 MHz, 12 bit. Service module (SM): OM power supply. 3 modules of acoustic positioning system - 2 cm resolution Cluster DAQ center Cluster DAQ center provides the string triggering, power supply, and communication to shore. Communication lines Connection between the strings and cluster DAQ center: 1.2 km carrier cable. Connection to shore – optical cable 6 km. 11

Cluster DAQ center Data from 3 strings are transferred through 8 Mbit DSL-modem to the cluster DAQ center. 3 DSL-modems are installed in PC-module. DAQ center is connected to shore by two optical 1Gbit Ethernet lines. Optical converters and power units are installed in Adjunction box. Communication Center (CC) provides global trigger and string power supply. CCРС GASIK Adjunction Box Shore optical cable 6 km length 3 pairs of optical fibers 3 copper lines Block diagram of the cluster DAQ center 12

Final technical design: Full scale GVD string with 24 OM Preproduction: 2012–2013(14). Full scale GVD cluster, 8 strings (192 OMs). Production (preliminary) Cost estimation 25 MEuro  2014–2015: Effective volume 0.1 – 0.3 km 3  2016–2017: Effective volume 0.3 – 0.6 km 3  2017–2018: Effective volume 0.6 – 0.9 km 3 Plans 13

Summary 1. Neutrino telescope NT200 is working in Lake Baikal for more than 10 years. 2. Preparation towards a km 3 -scale Gigaton Volume Detector in Lake Baikal is currently a central activity: - In-situ tests of the prototype string shows good performance of all string elements ( ). - A prototype GVD cluster with 3 strings was installed (2011) - New technology shore cable with optic channels was mounted (2011). 3. GVD Technical Design Report was prepared (2011) 4. Full scale GVD cluster (~200 OMs) is expected at 2013(14). 14

15