Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.

Slides:



Advertisements
Similar presentations
Objectives and Vocabulary
Advertisements

Chapter Ellipses.
What is it?.
10.4 Ellipses p An ellipse is a set of points such that the distance between that point and two fixed points called Foci remains constant d1 d2.
Section 11.6 – Conic Sections
Section 9.1 The Ellipse. Overview Conic sections are curves that result from the intersection of a right circular cone—think ice cream cone—and a plane—think.
Section 9.1 The Ellipse.
10-3 Ellipses Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
Ellipses Objective: Be able to get the equation of an ellipse from given information or the graph Be able to find the key features of and graph an ellipse.
Ellipses Unit 7.2. Description Locus of points in a plane such that the sum of the distances from two fixed points, called foci is constant. P Q d 1 +
Questions over Assignment  3R- One more thing we need to do on 8, 9, & 10.
9.1.1 – Conic Sections; The Ellipse
Definition: A hyperbola is the set of points P(x,y) in a plane such that the absolute value of the difference between the distances from P to two fixed.
Hyperbolas 9.3. Definition of a Hyperbola A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from two distinct.
Advanced Geometry Conic Sections Lesson 4
Chapter Hyperbolas.
9.5 Hyperbolas PART 1 Hyperbola/Parabola Quiz: Friday Conics Test: March 26.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
11.3 Ellipses Objective: By the end of the lesson, you should be able to write an equation of an ellipse and sketch its graph.
Conic Sections Part 2: Ellipses Integrated Math 4 Mrs. Tyrpak.
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Ellipses Part 1 Circle/Ellipse Quiz: March 9 Midterm: March 11.
Holt Algebra Ellipses 10-3 Ellipses Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Ellipses Topic 7.4. Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
SECTION: 10-2 ELLIPSES WARM-UP
Ellipses Topic Definitions Ellipse: set of all points where the sum of the distances from the foci is constant Major Axis: axis on which the foci.
10.3 The Ellipse.
MATT KWAK 10.2 THE CIRCLE AND THE ELLIPSE. CIRCLE Set of all points in a plane that are at a fixed distance from a fixed point(center) in the plane. With.
Warm up Write the standard form of the equation: Then find the radius and the coordinates of the center. Graph the equation.
Holt Algebra Ellipses Write the standard equation for an ellipse. Graph an ellipse, and identify its center, vertices, co-vertices, and foci. Objectives.
Hyperbolas. Hyperbola: a set of all points (x, y) the difference of whose distances from two distinct fixed points (foci) is a positive constant. Similar.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
What is it?. Definition: A hyperbola is the set of points P(x,y) in a plane such that the absolute value of the difference between the distances from.
Graph and write equations of Ellipses.
Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
Lake Zurich High School
Accelerated Precalculus Ellipses. One Minute Question Find the diameter of: x 2 + y 2 + 6x - 14y + 9 = 0.
Conics Ellipses. Ellipse Definition: the set of all points in a plane whose distances from two fixed points in the plane have a constant sum. The fixed.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
1 st Day Section A circle is a set of points in a plane that are a given distance (radius) from a given point (center). Standard Form: (x – h) 2.
Hyperbolas Objective: graph hyperbolas from standard form.
Section 10.4 Last Updated: December 2, Hyperbola  The set of all points in a plane whose differences of the distances from two fixed points (foci)
10.2 Ellipses. Ellipse – a set of points P in a plane such that the sum of the distances from P to 2 fixed points (F 1 and F 2 ) is a given constant K.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics Parabolas, Hyperbolas and Ellipses
10.2 Ellipses.
Ellipses Date: ____________.
Day 20 AGENDA: Quiz minutes.
Graph and Write Equations of Elllipses
MATH 1330 Section 8.2.
MATH 1330 Section 8.2b.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Ellipse Notes.
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Objectives and Vocabulary
9.4 Graph & Write Equations of Ellipses
Sullivan Algebra and Trigonometry: Section 11.3
Ellipse Last Updated: October 11, 2005.
distance out from center distance up/down from center
10-3 Ellipses Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
THE ELLIPSE Week 17.
Section 11.6 – Conic Sections
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
L10-4 Obj: Students will find equations for ellipses and graph ellipses. Ellipse Definition: Each fixed point F is a focus of an ellipse (plural: foci).
Ellipse.
Presentation transcript:

Making graphs and using equations of ellipses

An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points F1 and F2 is constant. The 2 fixed points, F1 and F2, are called the foci. An ellipse has 2 axes. The major axis is the longer axis and passes through the foci. The endpoints of the major axis are the vertices of the ellipse. The minor axis is the shorter axis of the ellipse, and its endpoints are the co-vertices. The major and minor axes are perpendicular and their point of intersection is the center of the ellipse.

Major axis major axis Horizontal vertical

Choose the appropriate standard form- the horizontal axis is longer so it is the major axis Find a and b - a= 2 and b = 1

Vertices- (a,0) and (-a, 0) Foci- (c,0) and (-c, 0) Co-vertices – (0,b) and (0, -b)

Vertices- (0,a) and (0, -a) Foci- (0,c) and (0, -c) Co-vertices – (b,0) and (-b,0)

find the vertices, co-vertices, foci and eccentricity

Major axis major axis Horizontal vertical