The Design of an Acquisitional Query Processor For Sensor Networks Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong Presentation.

Slides:



Advertisements
Similar presentations
Energy-Efficient Communication Protocol for Wireless Microsensor Networks by Mikhail Nesterenko Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari.
Advertisements

한국기술교육대학교 컴퓨터 공학 김홍연 TinyDB : An Acquisitional Query Processing System for Sensor Networks. - Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
1 Balancing Push and Pull for Efficient Information Discovery in Large-Scale Sensor Networks Xin Liu, Qingfeng Huang, Ying Zhang CS 6204 Adv Top. in Systems-Mob.
PERFORMANCE MEASUREMENTS OF WIRELESS SENSOR NETWORKS Gizem ERDOĞAN.
1 Sensor Network Databases Ref: Wireless sensor networks---An information processing approach Feng Zhao and Leonidas Guibas (chapter 6)
David Chu--UC Berkeley Amol Deshpande--University of Maryland Joseph M. Hellerstein--UC Berkeley Intel Research Berkeley Wei Hong--Arched Rock Corp. Approximate.
PEDS September 18, 2006 Power Efficient System for Sensor Networks1 S. Coleri, A. Puri and P. Varaiya UC Berkeley Eighth IEEE International Symposium on.
The Cougar Approach to In-Network Query Processing in Sensor Networks By Yong Yao and Johannes Gehrke Cornell University Presented by Penelope Brooks.
Aggregation in Sensor Networks NEST Weekly Meeting Sam Madden Rob Szewczyk 10/4/01.
Adaptive Sampling in Distributed Streaming Environment Ankur Jain 2/4/03.
Sensor Database: Querying Sensor Networks Yinghua Wu, Haiyong Xie.
A Survey of Wireless Sensor Network Data Collection Schemes by Brett Wilson.
Approximate data collection in sensor networks the appeal of probabilistic models David Chu Amol Deshpande Joe Hellerstein Wei Hong ICDE 2006 Atlanta,
Congestion Control and Fairness for Many-to-One Routing in Sensor Networks Cheng Tien Ee Ruzena Bajcsy Motivation Congestion Control Background Simulation.
Exploiting Correlated Attributes in Acquisitional Query Processing Amol Deshpande University of Maryland Joint work with Carlos Sam
1 Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye Fabio Silva John Heidemann Presented by: Ronak Bhuta Date: 4 th December 2007.
Online Data Gathering for Maximizing Network Lifetime in Sensor Networks IEEE transactions on Mobile Computing Weifa Liang, YuZhen Liu.
1 Acquisitional Query Processing in TinyDB Sam Madden UC Berkeley NEST Winter Retreat 2003.
The Design of an Acquisitional Query Processor For Sensor Networks Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong Presentation.
Wireless Distributed Sensor Networks Special Thanks to: Jasvinder Singh Hitesh Nama.
A Transmission Control Scheme for Media Access in Sensor Networks Alec Woo, David Culler (University of California, Berkeley) Special thanks to Wei Ye.
Model-driven Data Acquisition in Sensor Networks Amol Deshpande 1,4 Carlos Guestrin 4,2 Sam Madden 4,3 Joe Hellerstein 1,4 Wei Hong 4 1 UC Berkeley 2 Carnegie.
Data Management for Sensor Networks Zachary G. Ives University of Pennsylvania CIS 650 – Database & Information Systems April 4, 2005.
CS 580S Sensor Networks and Systems Professor Kyoung Don Kang Lecture 7 February 13, 2006.
Top-k Monitoring in Wireless Sensor Networks Minji Wu, Jianliang Xu, Xueyan Tang, and Wang-Chien Lee IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
TAG: A TINY AGGREGATION SERVICE FOR AD-HOC SENSOR NETWORKS Presented by Akash Kapoor SAMUEL MADDEN, MICHAEL J. FRANKLIN, JOSEPH HELLERSTEIN, AND WEI HONG.
T AG : A TINY AGGREGATION SERVICE FOR AD - HOC SENSOR NETWORKS Samuel Madden, Michael J. Franklin, Joseph Hellerstein, and Wei Hong Presented by – Mahanth.
TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Networks Paper By : Samuel Madden, Michael J. Franklin, Joseph Hellerstein, and Wei Hong Instructor :
Optimizing Queries and Diverse Data Sources Laura M. Hass Donald Kossman Edward L. Wimmers Jun Yang Presented By Siddhartha Dasari.
INF5100 Autumn 2007 © Ellen Munthe-Kaas and Jarle Søberg 1 Data Management in Sensor Networks Ellen Munthe-Kaas Jarle Søberg.
The Design of an Acquisitional Query Processor For Sensor Networks Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyOS By Morgan Leider CS 411 with Mike Rowe with Mike Rowe.
March 6th, 2008Andrew Ofstad ECE 256, Spring 2008 TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Networks Samuel Madden, Michael J. Franklin, Joseph.
TAG: a Tiny Aggregation Service for Ad-Hoc Sensor Networks Authors: Samuel Madden, Michael Franklin, Joseph Hellerstein Presented by: Vikas Motwani CSE.
1 TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks Samuel Madden UC Berkeley with Michael Franklin, Joseph Hellerstein, and Wei Hong December.
INT 598 Data Management for Sensor Networks Silvia Nittel Spatial Information Science & Engineering University of Maine Fall 2006.
The Design of an Acquisitional Query Processor for Sensor Networks CS851 Presentation 2005 Presented by: Gang Zhou University of Virginia.
CS542 Seminar – Sensor OS A Virtual Machine For Sensor Networks Oct. 28, 2009 Seok Kim Eugene Seo R. Muller, G. Alonso, and D. Kossmann.
Tufts University. EE194-WIR Wireless Sensor Networks. March 3, 2005 Increased QoS through a Degraded Channel using a Cross-Layered HARQ Protocol Elliot.
Lan F.Akyildiz,Weilian Su, Erdal Cayirci,and Yogesh sankarasubramaniam IEEE Communications Magazine 2002 Speaker:earl A Survey on Sensor Networks.
 SNU INC Lab MOBICOM 2002 Directed Diffusion for Wireless Sensor Networking C. Intanagonwiwat, R. Govindan, D. Estrin, John Heidemann, and Fabio Silva.
Multi-Criteria Routing in Pervasive Environment with Sensors Santhanakrishnan, G., Li, Q., Beaver, J., Chrysanthis, P.K., Amer, A. and Labrinidis, A Department.
REED: Robust, Efficient Filtering and Event Detection in Sensor Networks Daniel Abadi, Samuel Madden, Wolfgang Lindner MIT United States VLDB 2005.
1 REED: Robust, Efficient Filtering and Event Detection in Sensor Networks Daniel Abadi, Samuel Madden, Wolfgang Lindner MIT United States VLDB 2005.
Energy-Efficient Monitoring of Extreme Values in Sensor Networks Loo, Kin Kong 10 May, 2007.
REECH ME: Regional Energy Efficient Cluster Heads based on Maximum Energy Routing Protocol Prepared by: Arslan Haider. 1.
Energy conservation in Wireless Sensor Networks Sagnik Bhattacharya, Tarek Abdelzaher University of Virginia, Department of Computer Science School of.
KAIS T Distributed cross-layer scheduling for In-network sensor query processing PERCOM (THU) Lee Cheol-Ki Network & Security Lab.
Dr. Sudharman K. Jayaweera and Amila Kariyapperuma ECE Department University of New Mexico Ankur Sharma Department of ECE Indian Institute of Technology,
Energy-Conserving Data Placement and Asynchronous Multicast in Wireless Sensor Networks Sagnik Bhattacharya, Hyung Kim, Shashi Prabh, Tarek Abdelzaher.
By: Gang Zhou Computer Science Department University of Virginia 1 Medians and Beyond: New Aggregation Techniques for Sensor Networks CS851 Seminar Presentation.
Aggregation and Secure Aggregation. Learning Objectives Understand why we need aggregation in WSNs Understand aggregation protocols in WSNs Understand.
W. Hong & S. Madden – Implementation and Research Issues in Query Processing for Wireless Sensor Networks, ICDE 2004.
In-Network Query Processing on Heterogeneous Hardware Martin Lukac*†, Harkirat Singh*, Mark Yarvis*, Nithya Ramanathan*† *Intel.
TreeCast: A Stateless Addressing and Routing Architecture for Sensor Networks Santashil PalChaudhuri, Shu Du, Ami K. Saha, and David B. Johnson Department.
REED : Robust, Efficient Filtering and Event Detection in Sensor Network Daniel J. Abadi, Samuel Madden, Wolfgang Lindner Proceedings of the 31st VLDB.
INF5100 Autumn 2008 © Ellen Munthe-Kaas and Jarle Søberg 1 Data Management in Sensor Networks Ellen Munthe-Kaas Jarle Søberg.
Aggregation and Secure Aggregation. [Aggre_1] Section 12 Why do we need Aggregation? Sensor networks – Event-based Systems Example Query: –What is the.
Sep Multiple Query Optimization for Wireless Sensor Networks Shili Xiang Hock Beng Lim Kian-Lee Tan (ICDE 2007) Presented by Shan Bai.
Lecture A/18-849B/95-811A/19-729A Internet-Scale Sensor Systems: Design and Policy Lecture 15 Sensor Databases & Data Stream Systems Phil Gibbons.
Cascading : An Overview of the Strategy Yujie Zhu and Raghupathy Sivakumar GNAN Research Group, Georgia Tech Energy-Efficient Communication Strategy for.
Data Query in Sensor Networks Carmelissa Valera Jason Torre Carmelissa Valera Jason Torre.
TAG: a Tiny AGgregation service for ad-hoc sensor networks Authors: Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong Presenter: Mingwei.
Demetrios Zeinalipour-Yazti (Univ. of Cyprus)
Distributed database approach,
The Design of an Acquisitional Query Processor For Sensor Networks
Distributing Queries Over Low Power Sensor Networks
Investigating Mac Power Consumption in Wireless Sensor Network
REED : Robust, Efficient Filtering and Event Detection
Aggregation.
Presentation transcript:

The Design of an Acquisitional Query Processor For Sensor Networks Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong Presentation by John Lynn

Overview Goals Goals Acquisitional Query Language Acquisitional Query Language Optimizations Optimizations Future Work Future Work Conclusions Conclusions Discussion Discussion

Goals Provide a query processor-like interface to sensor networks Provide a query processor-like interface to sensor networks Use acquisitional techniques to reduce power consumption compared to traditional passive systems Use acquisitional techniques to reduce power consumption compared to traditional passive systems

How? What is meant by acquisitional techniques? What is meant by acquisitional techniques? Where, when, and how often. Where, when, and how often. Four related questions Four related questions When should samples be taken? When should samples be taken? What sensors have relevant data? What sensors have relevant data? In what order should samples be taken? In what order should samples be taken? Is it worth it? Is it worth it?

What’s the big deal? Radio consumes as much power as the CPU Radio consumes as much power as the CPU Transmitting one bit of data consumes as much energy as 1000 CPU instructions! Transmitting one bit of data consumes as much energy as 1000 CPU instructions! Message sizes in TinyDB are by default 48 bytes Message sizes in TinyDB are by default 48 bytes Sensing takes significant energy Sensing takes significant energy

An Acquisitional Query Language SQL-like queries in the form of SELECT- FROM-WHERE SQL-like queries in the form of SELECT- FROM-WHERE Support for selection, join, projection, and aggregation Support for selection, join, projection, and aggregation Also support for sampling, windowing, and sub- queries Also support for sampling, windowing, and sub- queries Not mentioned is the ability to log data and actuate physical hardware Not mentioned is the ability to log data and actuate physical hardware

An Acquisitional Query Language Example: SELECT nodeid, light, temp FROM sensors SAMPLE INTERVAL 1s FOR 10s Example: SELECT nodeid, light, temp FROM sensors SAMPLE INTERVAL 1s FOR 10s Sensors viewed as a single table Sensors viewed as a single table Columns are sensor data Columns are sensor data Rows are individual sensors Rows are individual sensors

Queries as a Stream Sensors table is an unbounded, continuous data stream Sensors table is an unbounded, continuous data stream Operations such as sort and symmetric join are not allowed on streams Operations such as sort and symmetric join are not allowed on streams They are allowed on bounded subsets of the stream (windows) They are allowed on bounded subsets of the stream (windows)

Windows Windows in TinyDB are fixed-size materialization points Windows in TinyDB are fixed-size materialization points Materialization points can be used in queries Materialization points can be used in queries Example CREATE STORAGE POINT recentlight SIZE 8 AS (SELECT nodeid, light FROM sensors SAMPLE INTERVAL 10s) SELECT COUNT(*) FROM sensors AS s, recentlight AS r1 WHERE r.nodeid = s.nodeid AND s.light < r1.light SAMPLE INTERVAL 10s Example CREATE STORAGE POINT recentlight SIZE 8 AS (SELECT nodeid, light FROM sensors SAMPLE INTERVAL 10s) SELECT COUNT(*) FROM sensors AS s, recentlight AS r1 WHERE r.nodeid = s.nodeid AND s.light < r1.light SAMPLE INTERVAL 10s

Temporal Aggregation Example SELECT WINAVG(volume, 30s, 5s) FROM sensors SAMPLE INTERVAL 1s Example SELECT WINAVG(volume, 30s, 5s) FROM sensors SAMPLE INTERVAL 1s Receive only 6 results from each sensor instead of 30 Receive only 6 results from each sensor instead of 30

Event-Based Queries An alternative to continuous polling for data An alternative to continuous polling for data Example ON EVENT bird-detector(loc): SELECT AVG(light), AVG(temp), event.loc FROM sensors AS s WHERE dist(s.loc, event.loc) < 10m SAMPLE INTERVAL 2s FOR 30s Example ON EVENT bird-detector(loc): SELECT AVG(light), AVG(temp), event.loc FROM sensors AS s WHERE dist(s.loc, event.loc) < 10m SAMPLE INTERVAL 2s FOR 30s

Lifetime-Based Queries Example SELECT nodeid, accel FROM sensors LIFETIME 30 days Example SELECT nodeid, accel FROM sensors LIFETIME 30 days Nodes perform cost-based analysis in order to determine data rate Nodes perform cost-based analysis in order to determine data rate Nodes must transmit at the root’s rate or at an integral divisor of it Nodes must transmit at the root’s rate or at an integral divisor of it

Lifetime-Based Queries Tested a mote with a 24 week query Tested a mote with a 24 week query Sample rate was 15.2 seconds per sample Sample rate was 15.2 seconds per sample Took 9 voltage readings over 12 days Took 9 voltage readings over 12 days

Optimization Three phases to queries Three phases to queries Creation of query Creation of query Dissemination of query Dissemination of query Execution of query Execution of query TinyDB makes optimizations at each step TinyDB makes optimizations at each step

Power-Based Optimization Queries optimized by base station before dissemination Queries optimized by base station before dissemination Cost-based optimization to yield lowest overall power consumption Cost-based optimization to yield lowest overall power consumption Cost dominated by sampling and transmitting Cost dominated by sampling and transmitting Optimizer focuses on ordering joins, selections, and sampling on individual nodes Optimizer focuses on ordering joins, selections, and sampling on individual nodes

Metadata Each node contains metadata about its attributes Each node contains metadata about its attributes Nodes periodically send metadata to root Nodes periodically send metadata to root Metadata also contains information about aggregate functions Metadata also contains information about aggregate functions Information about cost, time to fetch, and range is used in query optimization Information about cost, time to fetch, and range is used in query optimization

Using Metadata Consider the query SELECT accel, mag FROM sensors WHERE accel > c1 AND mag > c2 SAMPLE INTERVAL 1s Consider the query SELECT accel, mag FROM sensors WHERE accel > c1 AND mag > c2 SAMPLE INTERVAL 1s Order of magnitude difference between sample costs Order of magnitude difference between sample costs Three options Three options Measure accel and mag, then process select Measure accel and mag, then process select Measure mag, filter, then measure accel Measure mag, filter, then measure accel Measure accel, filter, then measure mag Measure accel, filter, then measure mag First option always more expensive. Second option an order of magnitude more expensive than third First option always more expensive. Second option an order of magnitude more expensive than third Second option can be cheaper if the predicate is highly selective Second option can be cheaper if the predicate is highly selective

Using Metadata Another example SELECT WINMAX(light, 8s, 8s) FROM sensors WHERE mag > x SAMPLE INTERVAL 1s Another example SELECT WINMAX(light, 8s, 8s) FROM sensors WHERE mag > x SAMPLE INTERVAL 1s Unless mag > x is very selective, it is cheaper to check if current light is greater than max Unless mag > x is very selective, it is cheaper to check if current light is greater than max Reordering is called exemplary aggregate pushdown Reordering is called exemplary aggregate pushdown

Dissemination Optimization Build semantic routing tree (SRT) Build semantic routing tree (SRT) SRT nodes choose parents based on semantic properties as well as link quality SRT nodes choose parents based on semantic properties as well as link quality Parent nodes keep track of the ranges of values for children Parent nodes keep track of the ranges of values for children

Evaluation of SRT SRT are limited to constant attributes SRT are limited to constant attributes Even so, maintenance is required Even so, maintenance is required Possible to use for non-constant attributes but cost can be prohibitive Possible to use for non-constant attributes but cost can be prohibitive

Evaulation of SRT Compared three different strategies for building tree, random, closest, and cluster Compared three different strategies for building tree, random, closest, and cluster Report results for two different sensor value distributions, random and geographic Report results for two different sensor value distributions, random and geographic

SRT Results

Query Execution Queries have been optimized and distributed, what more can we do? Queries have been optimized and distributed, what more can we do? Aggregate data that is sent back to the root Aggregate data that is sent back to the root Prioritize data that needs to be sent Prioritize data that needs to be sent Naïve - FIFO Naïve - FIFO Winavg – Average top queue entries Winavg – Average top queue entries Delta – Send result with most change Delta – Send result with most change Adapt data rates and power consumption Adapt data rates and power consumption

Prioritization Comparison Sample rate was K times faster than delivery rate. Sample rate was K times faster than delivery rate. Readings generated by shaking the sensor Readings generated by shaking the sensor In this example, K = 4 In this example, K = 4

Adaptation Not safe to assume that network channel is uncontested Not safe to assume that network channel is uncontested TinyDB reduces packets sent as channel contention rises TinyDB reduces packets sent as channel contention rises

Future Work Selectivity of operators based upon range of sensor Selectivity of operators based upon range of sensor Exemplary aggregate pushdown Exemplary aggregate pushdown More sophisticated prioritization schemes More sophisticated prioritization schemes Better re-optimization of sample rate based upon acquired data Better re-optimization of sample rate based upon acquired data

Evaluation TinyDB provides a simple yet powerful interface to sensor networks TinyDB provides a simple yet powerful interface to sensor networks TinyDB takes measures to conserve power at all phases of query processing TinyDB takes measures to conserve power at all phases of query processing

Discussion Is this the best way (right way?) to look at a sensor network? Is this the best way (right way?) to look at a sensor network? Is their approximation of battery lifetime sufficient? Is their approximation of battery lifetime sufficient? Was their evaluation of SRT good enough? Was their evaluation of SRT good enough?