Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1.

Slides:



Advertisements
Similar presentations
General Relativity Physics Honours 2009 Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 4.
Advertisements

Brane-World Inflation
Charged Rotating Kaluza-Klein Black Holes in Dilaton Gravity Ken Matsuno ( Osaka City University ) collaboration with Masoud Allahverdizadeh ( Universitat.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
James A. Shifflett Dissertation Presentation For Degree of Doctor of Philosophy in Physics Washington University in St. Louis April 22, 2008 Chairperson:
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
{Based on PRD 81 (2010) [ ], joint work with X.-N. Wu}
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
July 2005 Einstein Conference Paris Thermodynamics of a Schwarzschild black hole observed with finite precision C. Chevalier 1, F. Debbasch 1, M. Bustamante.
Non-Localizability of Electric Coupling and Gravitational Binding of Charged Objects Matthew Corne Eastern Gravity Meeting 11 May 12-13, 2008.
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 8.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 4.
Francisco Navarro-Lérida 1, Jutta Kunz 1, Dieter Maison 2, Jan Viebahn 1 MG11 Meeting, Berlin Charged Rotating Black Holes in Higher Dimensions.
Mohamed Anber HEP Bag Lunch April 1st With Lorenzo Sorbo
AdS4/CFT3+gravity for Accelerating Conical Singularities arXiv: arXiv: Mohamed Anber HET Bag Lunch Novemberr 12th.
Roberto Emparan ICREA & U. Barcelona
Gravitational Perturbations of Higher Dimensional Rotating Black Holes Harvey Reall University of Nottingham Collaborators: Hari Kunduri, James Lucietti.
Announcements Exam 4 is Monday May 4. Tentatively will cover Chapters 9, 10, 11 & 12 Sample questions will be posted soon Observing Night tomorrow night.
MANY-BODY PROBLEM in KALUZA-KLEIN MODELS with TOROIDAL COMPACTIFICATION Astronomical Observatory and Department of Theoretical Physics, Odessa National.
1 「 Solitonic generation of solutions including five-dimensional black rings and black holes 」 T. M. (CST Nihon Univ.) Hideo Iguchi ( 〃 ) We show some.
Instability of Black Holes Induced by Chern-Simons Terms Shin Nakamura (Kyoto Univ.) Based on S.N.-Ooguri-Park, arXiv:
International Workshop on Astronomical X-Ray Optics Fingerprints of Superspinars in Astrophysical Phenomena Zdeněk Stuchlík and Jan Schee Institute of.
A New Endpoint for Hawking Evaporation Gary Horowitz UCSB hep-th/ Gary Horowitz UCSB hep-th/
Spinning Particles in Scalar-Tensor Gravity Chih-Hung Wang National Central University D. A. Burton, R. W.Tucker & C. H. Wang, Physics Letter A 372 (2008)
Exact Solutions for 3-body and 4-body Problems in 4-dimensional Space Hideki Ishihara Osaka City University.
Perturbations of Higher-dimensional Spacetimes Jan Novák.
Dipole Black Ring and Kaluza- Klein Bubbles Sequences Petya Nedkova, Stoytcho Yazadjiev Department of Theoretical Physics, Faculty of Physics, Sofia University.
Cosmic censorship in overcharging a charged black hole with a charged particle Yukawa Institute for Theoretical Physics (Kyoto University) Soichiro Isoyama.
KERR SUPERSPINARS AS AN ALTERNATIVE TO BLACK HOLES Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian university in Opava.
General Relativity Physics Honours 2005 Dr Geraint F. Lewis Rm 557, A29
A double Myers-Perry black hole in five dimensions Published in JHEP 0807:009,2008. (arXiv: ) Carlos A. R. Herdeiro, Carmen Rebelo, Miguel Zilhão.
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
1 Steklov Mathematical Institute RAS G. Alekseev G. Alekseev Cosmological solutions Dynamics of waves Fields of accelerated sources Stationary axisymmetric.
Analysis of half-spin particle motion in static Reissner-Nordström and Schwarzschild fields М.V.Gorbatenko, V.P.Neznamov, Е.Yu.Popov (DSPIN 2015), Dubna,
Hawking radiation for a Proca field Mengjie Wang (王梦杰 ) In collaboration with Carlos Herdeiro & Marco Sampaio Mengjie Wang 王梦杰 Based on: PRD85(2012)
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
Jim Shifflett WUGRAV group Advisor: Clifford Will Graduate student seminar, 16 Feb Overview: Einstein-Maxwell theory Lambda-renormalized.
Equilibrium configurations of perfect fluid in Reissner-Nordström de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-anti-de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-(anti-)de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík & Petr Slaný MG12 Paris,
Black holes sourced by a massless scalar KSM2105, FRANKFURT July, 21th 2015 M. Cadoni, University of Cagliari We construct asymptotically flat black hole.
Conserved Quantities in General Relativity A story about asymptotic flatness.
Stability of five-dimensional Myers-Perry black holes with equal angular momenta Kyoto University, Japan Keiju Murata & Jiro Soda.
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
Black Holes in General Relativity and Astrophysics Theoretical Physics Colloquium on Cosmology 2008/2009 Michiel Bouwhuis.
Department of Physics, National University of Singapore
Black hole solutions in the N>4 gravity models with higher order curvature corrections and possibilities for their experimental search S.Alexeyev *, N.Popov,
Gravitational collapse of massless scalar field Bin Wang Shanghai Jiao Tong University.
1 CONFINING INTERQUARK POTENTIALS FROM NON ABELIAN GAUGE THEORIES COUPLED TO DILATON Mohamed CHABAB LPHEA, FSSM Cadi- Ayyad University Marrakech, Morocco.
Higher Dimensional Black Holes Tsvi Piran Evgeny Sorkin & Barak Kol The Hebrew University, Jerusalem Israel E. Sorkin & TP, Phys.Rev.Lett. 90 (2003)
Holographic QCD in the medium
KERR BLACK HOLES Generalized BH description includes spin –Later researchers use it to predict new effects!! Two crucial surfaces –inner surface = horizon.
Announcements Grades for third exam are now available on WebCT Observing this week and next week counts on the third exam. Please print out the observing.
General Relativity Physics Honours 2009 Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 3.
ON EXISTENCE OF HALO ORBITS IN COMPACT OBJECTS SPACETIMES Jiří Kovář Zdeněk Stuchlík & Vladimír Karas Institute of Physics Silesian University in Opava.
Hawking radiation as tunneling from squashed Kaluza-Klein BH Ken Matsuno and Koichiro Umetsu (Osaka city university) (Kyoto sangyo university) Phys. Rev.
연세대 특강 What is a Black Hole? Black-Hole Bomb(BHB) Mini Black Holes
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
Dept.of Physics & Astrophysics
General Black Hole solutions in D=5 SUGRA
Thermodynamic Volume in AdS/CFT
Black Holes.
Masashi KIMURA (YITP, Kyoto university) w/ N.Tsukamoto and T.Harada
A New Approach to Equation of Motion for a fast-moving particle
Kaluza-Klein Black Holes in 5-dim. Einstein-Maxwell Theory
Global Defects near Black Holes
SL(4,R) sigma model & Charged black rings
Presentation transcript:

Innermost stable circular orbits around squashed Kaluza-Klein black holes Ken Matsuno & Hideki Ishihara ( Osaka City University ) 1

2 1. Introduction Five-dimensional black objects Circular orbits around squashed Kaluza-Klein black holes 2. Innermost stable circular orbits around squashed Kaluza-Klein black holes (Charged) static squashed black holes Charged rotating squashed black holes

1. Introduction 3

我々は 4 次元時空 に住んでいる 量子論と矛盾なく, 4 種類の力を統一的に議論する 弦理論 超重力理論 余剰次元 の効果が顕著 高次元ブラックホール ( BH ) に注目 空間 3 次元 時間 1 次元 高次元時空 上の理論 高エネルギー現象 強重力場 4 Motivations

Dimensional reductions 高次元時空 ⇒ 有効的に 4 次元時空 a.Kaluza-Klein model “ とても小さく丸められていて見えない ” ( 針金 ) b.Brane world model “ 行くことが出来ないため見えない ” 余剰次元方向 4 次元 5

“ Hybrid ” Brane world model Brane ( 4 次元時空 ) : 物質 と 重力以外の力 が束縛 Bulk ( 高次元時空 ) : 重力のみ伝播 重力の逆 2 乗則から制限 ⇒ ( 余剰次元 ) ≦ 0.1 mm 加速器内で ミニ・ブラックホール 生成 ? ( 高次元時空の実験的検証 ) Brane Bulk Brane 6

5-dim. Black Objects 4 次元 : 漸近平坦, 真空, 定常, 地平線の上と外に特異点なし ⇒ Kerr BH with S 2 horizon only 5 次元 : For above conditions ⇒ Variety of Horizon Topologies Black Holes ( S 3 ) Black Rings ( S 2 ×S 1 ) [ 以降、 5 次元時空に注目 ] 7

4D Black Holes : Asymptically Flat 漸近平坦 5D Black Holes : Variety of Asymptotic Structures Asymptotically Flat : Asymptotically Locally Flat : : 5D Minkowski : Lens Space : 4D Minkowski + a compact dim. Asymptotic Structures of Black Holes ( time ) ( radial )( angular ) Kaluza-Klein Black Holes 8

Squashed Kaluza-Klein Black Holes 9

Kaluza-Klein Black Holes 4 次元 Minkowski Compact S 1 4 次元 Minkowski [ 4 次元 Minkowski と Compact S 1 の直積 ] 10 無限遠における計量の漸近形

Squashed Kaluza-Klein Black Holes 4 次元 Minkowski Twisted S 1 [ 4 次元 Minkowski 上に 小さなサイズのツイストされた余剰次元 S 1 ] 11 無限遠における計量の漸近形

Vacuum Squashed Kaluza-Klein Black Holes 12 Killing vector fields : ∂/ ∂ t, ∂/ ∂ φ, ∂/∂ψ Parameters : metric

Three-sphere S 3 ( S 2 base )( twisted S 1 fiber ) S2S2 S1S1 S3S3 13 S 3 : Hopf バンドル構造 (S 2 上のツイストされた S 1 ファイバー ) 丸い S 3 = S 2 と S 1 のサイズ比が1 : 1

14 Induced metric on black hole horizon ρ g

15 Asymptotic structure of squashed black hole A twisted S 1 fiber bundle over 4D Minkowski spacetime 余剰次元サイズ : “ 天体的ブラックホール ” ⇔ r ∞ << ρ g

16 Physical Quantities Killing vector fields : ∂/ ∂ t, ∂/ ∂ φ, ∂/∂ψ Komar mass :

異なる漸近構造を持つ 5 次元ブラックホール 5D squashed Kaluza-Klein BH ρgρg 4D Minkowski + a compact dim. 17 近傍 : 5 次元的 遠方 : 4 次元的 ρ=0 ∞ 5D 漸近平坦 BH r+r+ 5D Minkowski 至る所、 5 次元的 r=0 ∞

18 Squashed KK BH 解の一般化と応用 Squashed Kaluza-Klein ブラックホール解の一般化 回転パラメータを含むブラックホール解 多体 BPS ブラックホール解 Dilaton 場や非可換ゲージ場を含む重力理論におけるブラックホール解 厳密解が得られたことにより … 安定性などの摂動的研究 熱力学 ホーキング輻射 ブラックホールの周りの試験粒子の運動の研究 ( geodetic precessions, 重力レンズ, … ) ブラックホール時空を用いた余剰次元の検証に向けた研究の端緒

Timelike Geodesics in Vacuum Squashed Kaluza-Klein Black Hole Spacetimes Phys. Rev. D 80, (2009) 19

20 Lagrangian and constants of motion metric Constants of motion : Lagrangian :

21 Timelike geodesics without extra dimensional direction Effective Lagrangian Lagrangian : Assumption : Particle has no momentum in extra direction We can concentrate on orbits with θ=π/2 on assumption of p ψ =0

Timelike Geodesics 22 Effective potential Energy conservation equation ρ 0 ⇒ 0 : Effective potential for 4D Schwarzschild black holes

Comparison of Timelike Geodesics 5D squashed Kaluza-Klein BH 23 5D 漸近平坦 BH Stable circular orbit ! ρ 0 = ρ g Describing geodesics around compact objects

Stable circular motions 24 ブラックホール時空を用いた余剰次元の検証

2. Innermost Stable Circular Orbits around Squashed Kaluza-Klein Black Holes 25

Vacuum static squashed Kaluza-Klein black hole case 26

27 Types of timelike geodesics in vacuum squashed KK BHs 4D Schwarzschild like behaviors Innermost Stable Circular Orbit ( ISCO )

28 Innermost Stable Circular Orbit and Binding Energy E b Energy conservation equation : Binding energy : 落下物が ISCO に落ち着くまでに放出するエネルギー cf. 4D Schwarzschild : 5.7% 4D extreme RN : 8.1% 4D extreme Kerr : 42%

29 Innermost stable circular orbits in vacuum squashed BH spacetimes ρ 0 = ρ g ρ 0 = ρ g /2 ρ 0 = ρ g 余剰次元サイズ : “ 天体的ブラックホール ” 程、 Binding Energy ⇒ 大

Charged static squashed Kaluza-Klein black hole case 30

31 Timelike geodesics of neutral test particles Effective potential Energy conservation equation ρ 0 ⇒ 0 : Effective potential for 4D Reissner-Nordstrom black holes

32 Innermost stable circular orbits in charged squashed BH spacetimes 余剰次元サイズ : “ 天体的ブラックホール ” 程、 Binding Energy ⇒ 大 4D extreme RN : 8.1% 4D extreme Kerr : 42%

Charged Rotating Squashed Kaluza-Klein Black Holes Phys. Rev. D 77, (2008) 33

5D Einstein-Maxwell system with Chern-Simons term 34 Action Equations of motion

Charged Rotating Squashed Kaluza-Klein Black Holes 35 Killing vector fields : ∂/ ∂ t, ∂/ ∂ φ, ∂/∂ψ Parameters : Metric Gauge potential

Metric functions 36

Region of Parameters ( m, q, a, r ∞ ) 37 No naked singularity and closed timelike curve on and outside BH horizon

Region of Parameters ( m, q, a, r ∞ ) 38 r ∞ = 2a ( L 2 = 0 )

Region of Parameters ( m, q, a, r ∞ ) 39 r ∞ = 2a ( -a 2, a 2 )

40 Induced metric on black hole horizon ρ H Induced metric Two horizons : ρ=ρ ±

41 Asymptotic structure of charged rotating squashed black hole A twisted S 1 fiber bundle over 4D Minkowski spacetime 余剰次元サイズ : “ 天体的ブラックホール ” ⇔ L << ρ H

42 Physical Quantities Killing vector fields : ∂/ ∂ t, ∂/ ∂ φ, ∂/∂ψ Komar mass : Komar angular momenta : Electric charge : Spacetime has only one angular momentum in extra direction

Various Limits 43 BPS extreme BHsnon-BPS extreme BHs BHs with twisted constant S 1 fiber ( -a 2, a 2 )

44 BHs with twisted constant S 1 fiber

Timelike Geodesics in Charged Rotating Squashed Kaluza-Klein Black Hole Spacetimes 45

46 Lagrangian and constants of motion for neutral test particles Metric Constants of motion : Lagrangian :

47 Timelike geodesics without extra dimensional direction Effective Lagrangian Lagrangian : Assumption : Particle has no momentum in extra direction We can concentrate on orbits with θ=π/2 on assumption of p ψ =0

Timelike Geodesics 48 Effective potential Energy conservation equation ρ H = 5a, L= a l 2 = 120a 2 l 2 ≒ 88a 2 l 2 = 50a 2 Binding energy の変化 ?

49 ( 復習 ) Innermost stable circular orbits around charged static squashed BHs 余剰次元サイズ : “ 天体的ブラックホール ” 程、 Binding Energy ⇒ 大 4D extreme RN : 8.1% 4D extreme Kerr : 42%

50 Innermost stable circular orbits around charged rotating squashed BHs ρ H = 5.3a, L= 1.1a ρ H = 0.6a, L= 1.2a ρ H = 0.6a, L= a ρ H = 2a, L= 1.1a m= const.

51 ρ H = 1.5a, L= 1.4a ρ H = 1.5a, L= 0.7a ISCOs around charged rotating squashed extreme BHs ( L 2 = 0 )

52 Innermost stable circular orbits around charged rotating squashed BHs ρ H = 2a, L= 0.002a ( L 2 = 0 )

53 Innermost stable circular orbits around charged rotating squashed BHs ρ H = 5.5a, L= 0.003a ( L 2 = 0 )

54 Innermost stable circular orbits around charged rotating squashed BHs Binding energy E b ⇒ 100% for “astronomical” squashed BHs ρ H = 6a, L= a ( L 2 = 0 )

55 Conclusion We consider timelike geodesics of neutral test particles around 5D charged rotating squashed Kaluza-Klein black holes Types of geodesics are similar to those of 4D black holes Binding energy E b ⇒ 100% for “astronomical” squashed BHs cf. Charged particles in 4D extreme RN : ~100% as |q| → large ( Johnston & Ruffini, 1974 ) Neutral particles in superspinar of string theory : ~100% ( Gimon & Horava, 2009 )

56 Future works Classical tests in squashed Kaluza-Klein black hole spacetimes Light deflection Time delay Perihelion shift D>5 squashed BPS Kaluza-Klein black holes D=4, 5 : special cases ? 5D charged slowly rotating Kaluza-Klein dilaton black holes with arbitrary Chern-Simons coupling Counterrotating horizons ? Instabilities ?

Large Scale Extra Dimension in Brane world model D 次元時空 ( D ≧ 4 ) ( 余剰次元サイズ L ) : D 次元重力定数 : D 次元プランクエネル ギー When E P,D ≒ TeV, D = 6 57

ミニ・ブラックホールの形成条件 コンプトン波長 ブラックホール半径 [ 4 次元 ] [ D 次元 ] 例. LHC 加速器内 : E P,D ≒ TeV ⇒ mc 2 ≧ TeV ≒ (proton mass)×10 3 ミニ・ブラックホール ! ≫ 1 GeV : 1 Proton 58

Three-sphere S 3 ( S 2 base )( twisted S 1 fiber ) S2S2 S1S1 S3S3 59

Three-sphere S 3 S 2 ×S 1 S3S3 ( S 2 base )( twisted S 1 fiber ) 60

Two types of Kaluza-Klein BHs Point SingularityStretched Singularity r+r+ r-r- r+r+ r-r- 同じ漸近構造 61