Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel.

Slides:



Advertisements
Similar presentations
Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Study on the Optimization of an Air Dehumidification Desiccant System J. Thermal.
Advertisements

Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Exchanger Design of Direct Evaporative Cooler Based on Outdoor and Indoor.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Effect of Tube Location Change on Heat Transfer Characteristics of Plain Plate.
Date of download: 7/5/2016 Copyright © ASME. All rights reserved. H 2 Mole Fraction Measurements in a Microwave Plasma Using Coherent Anti-Stokes Raman.
Date of download: 7/6/2016 Copyright © ASME. All rights reserved. From: On the Design of an Aero-Engine Nose Cone Anti-Icing System Using a Rotating Heat.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of.
Date of download: 7/11/2016 Copyright © ASME. All rights reserved. From: Reduction in Pollutants Emissions From Domestic Boilers—Computational Fluid Dynamics.
Date of download: 7/12/2016 Copyright © ASME. All rights reserved. From: Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Heat Conduction Effect on Oscillating Heat Pipe Operation J. Thermal Sci. Eng.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Predicting the Thermal Conductivity of Foam Neoprene at Elevated Ambient Pressure.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Simulation and Optimization of Drying of Wood Chips With Superheated Steam in.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
From: Heat Spreader Based on Room-Temperature Liquid Metal
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
From: Tool Path Generation for Turbine Blades Machining With Twin Tool
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
From: Thermal Analysis of Composite Phase Change Drywall Systems
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
From: Additive Manufacturing of Glass
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Heat Exchanger Efficiency
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
From: Modeling Transmission Effects on Multilayer Insulation
Date of download: 11/6/2017 Copyright © ASME. All rights reserved.
Date of download: 11/7/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
From: Nanoscale Fluid Mechanics and Energy Conversion
Date of download: 11/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/21/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
From: Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/29/2017 Copyright © ASME. All rights reserved.
Date of download: 1/1/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/22/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / (a) Photograph of microchannel heat exchanger/reactor. (b) Exploded illustration showing hot inert (red) and cold reactive (blue) gas-flow paths in a counterflow configuration. Magnified section highlights lamination points required for hermetic sealing during fabrication. (Reprinted with permission from Murphy et al., 2013, International Journal of Hydrogen Energy, 38, pp. 8741–8750. Copyright 2013 Elsevier [16].) Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Geometrically simplified four-layer model geometry (with dimensions) Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / (a) 2D temperature field down the center length of reactive channel 1; (b) net heat of reaction on the reactive surface within reactive channel 1; (c) 2D temperature field down the center length of inert channel 1. In all figures, the width (x direction) is magnified by a factor of five. Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Temperature profiles in the vertical (y) direction located at (a) z = 17.9 mm; and (b) z = 53.7 mm. Transverse position is held constant in the center of the reactor at x = 2.3 mm. Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Geometrically simplified model geometry for the five-layer design (with dimensions) Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Average wall temperatures in the four- and five-layer designs as a function of axial position z within the reactive channels Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Microchannel-reactor model results comparing performance of four- and five-layer designs. Experimental results for four-layer reactor are shown as symbols. (a) Temperature of exhaust streams, (b) product mole fractions, and (c) methane conversion, hydrogen yield, and carbon monoxide selectivity as a function of GHSV. Figure Legend:

Date of download: 6/1/2016 Copyright © ASME. All rights reserved. From: The Interplay of Heat Transfer and Endothermic Chemistry Within a Ceramic Microchannel Reactor J. Thermal Sci. Eng. Appl. 2014;6(3): doi: / Model-predicted thermal and mole-fraction fields: (a) reactive-side gas temperature, (b) mole fraction of CH 4, and (c) mole fraction of H 2 as a function of channel width (x) and axial position (z) down the center of reactive channel two for the 50,000 h −1 GHSV case. The x-axis is scaled by a factor of 5 relative to the z-axis. Figure Legend: