1 Social Computing and Big Data Analytics ( 社群運算大數據分析 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University.

Slides:



Advertisements
Similar presentations
Social Media Marketing Research 社會媒體行銷研究 SMMR08 TMIXM1A Thu 7,8 (14:10-16:00) L511 Exploratory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Advertisements

Case Study for Information Management 資訊管理個案
Social Media Marketing Analytics 社群網路行銷分析 SMMA02 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 社群網路行銷分析 (Social Media Marketing Analytics) Min-Yuh.
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Case Study for Information Management 資訊管理個案
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS02 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Case Study for Information Management 資訊管理個案 CSIM4B06 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Foundations of Business Intelligence - Database.
Social Media Marketing Research 社會媒體行銷研究 SMMR06 TMIXM1A Thu 7,8 (14:10-16:00) L511 Measuring the Construct Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Web Mining ( 網路探勘 ) WM12 TLMXM1A Wed 8,9 (15:10-17:00) U705 Web Usage Mining ( 網路使用挖掘 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Data Mining on the Web via Cloud Computing COMS E6125 Web Enhanced Information Management Presented By Hemanth Murthy.
Social Media Management 社會媒體管理 SMM06 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4B07 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Telecommunications, the Internet, and Wireless.
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS07 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Case Study for Information Management 資訊管理個案
Social Media Marketing Analytics 社群網路行銷分析
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
Social Media Marketing Research 社會媒體行銷研究 SMMR02 TMIXM1A Thu 7,8 (14:10-16:00) U505 Social Media: Facebook, Youtube, Blog, Microblog Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案 CSIM4C02 TLMXB4C (M1824) Tue 2, 3, 4 (9:10-12:00) B425 Information Systems in Global Business: UPS (Chap.
Social Media Management 社會媒體管理 SMM02 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Case Study for Information Management 資訊管理個案 CSIM4C05 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 IT Infrastructure and Emerging Technologies: Salesforce.com.
商業智慧實務 Practices of Business Intelligence BI06 MI4 Wed, 9,10 (16:10-18:00) (B130) 資料科學與巨量資料分析 (Data Science and Big Data Analytics) Min-Yuh Day 戴敏育.
Case Study for Information Management 資訊管理個案
Social Media Marketing Research 社會媒體行銷研究 SMMR09 TMIXM1A Thu 7,8 (14:10-16:00) L511 Confirmatory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Grid Programming on Taiwan Unigrid Platform. Outline Introduction to Taiwan Unigrid How to use Taiwan Unigrid.
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Data Mining 資料探勘 DM06 MI4 Thu. 9,10 (16:10-18:00) B513 社會網路分析、意見分析 (Social Network Analysis, Opinion Mining) Min-Yuh Day 戴敏育 Assistant Professor.
Case Study for Information Management 資訊管理個案 CSIM4C12 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 Enhancing Decision Making: CompStat (Chap. 12) Min-Yuh.
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
Case Study for Information Management 資訊管理個案
南台科技大學 資訊管理研究所 LEARNING SEQUENCES CONSTRUCTION USING VAN HIELE MODEL AND BAYESIAN NETWORK J. Wey Chen, Professor Department of Information Management Southern.
Web Mining ( 網路探勘 ) WM07 TLMXM1A Wed 8,9 (15:10-17:00) U705 Social Network Analysis ( 社會網路分析 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Case Study for Information Management 資訊管理個案 CSIM4C07 TLMXB4C (M1824) Tue 2 (9:10-10:00) B502 Thu 7,8 (14:10-16:00) B601 Foundations of Business.
商業智慧 Business Intelligence BI08 IM EMBA Fri 12,13,14 (19:20-22:10) D502 社會網路分析 (Social Network Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
(社群媒體大數據分析) Big Data Analytics on Social Media 李御璽 教授 銘傳大學資訊工程學系
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
商業智慧實務 Practices of Business Intelligence BI09 MI4 Wed, 9,10 (16:10-18:00) (B130) 社會網路分析 (Social Network Analysis) Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧實務 Practices of Business Intelligence BI09 MI4 Wed, 9,10 (16:10-18:00) (B113) 社會網路分析 (Social Network Analysis) Min-Yuh Day 戴敏育 Assistant Professor.
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Social Computing and Big Data Analytics 社群運算與大數據分析
巨量資料基礎: MapReduce典範、Hadoop與Spark生態系統
社群網路行銷管理 Social Media Marketing Management SMMM01 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 社群網路行銷管理課程介紹 (Course Orientation for.
Social Computing and Big Data Analytics 社群運算與大數據分析
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA02 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (Q201) Data Science and Big Data Analytics:
Harnessing Big Data with Hadoop Dipti Sangani; Madhu Reddy DBI210.
Social Computing and Big Data Analytics 社群運算與大數據分析 SCBDA12 MIS MBA (M2226) (8628) Wed, 8,9, (15:10-17:00) (B309) Social Network Analysis ( 社會網絡分析.
社群網路行銷管理 Social Media Marketing Management SMMM09 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) Min-Yuh Day 戴敏育 Assistant Professor.
BIG DATA. Big Data: A definition Big data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database.
資訊管理專題 Hot Issues of Information Management IM4B07 TLMXB4B (M0842) Tue 3,4 (10:10-12:00) B507 Foundations of Business Intelligence: IBM and Big Data.
巨量資料基礎: MapReduce典範、Hadoop與Spark生態系統
Social Computing and Big Data Analytics 社群運算與大數據分析
資訊管理專題 Hot Issues of Information Management
資訊管理專題 Hot Issues of Information Management
Social Computing and Big Data Analytics 社群運算與大數據分析
Course Orientation for Big Data Mining (巨量資料探勘課程介紹)
大數據行銷研究 Big Data Marketing Research
Case Study for Information Management 資訊管理個案
Tutorial: Big Data Algorithms and Applications Under Hadoop
大數據行銷研究 Big Data Marketing Research
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Big DATA.
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

1 Social Computing and Big Data Analytics ( 社群運算大數據分析 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/ Tamkang University Time: 2016/04/18 (14:00-16:00) Place: China Airlines

戴敏育 博士 (Min-Yuh Day, Ph.D.) 淡江大學資管系專任助理教授 中央研究院資訊科學研究所訪問學人 國立台灣大學資訊管理博士 Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM ) Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE ) Workshop Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI) 2

Outline 3 Social Computing and Big Data Analytics Analyzing the Social Web: Social Network Analysis

Business Insights with Social Analytics 4

Social Computing Social Network Analysis Link mining Community Detection Social Recommendation 5

Internet Evolution Internet of People (IoP): Social Media Internet of Things (IoT): Machine to Machine 6 Source: Marc Jadoul (2015), The IoT: The next step in internet evolution, March 11,

Big Data Analytics and Data Mining 7

Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications 8 Source:

Architecture of Big Data Analytics 9 Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications Data Mining OLAP Reports Queries Hadoop MapReduce Pig Hive Jaql Zookeeper Hbase Cassandra Oozie Avro Mahout Others Middleware Extract Transform Load Data Warehouse Traditional Format CSV, Tables * Internal * External * Multiple formats * Multiple locations * Multiple applications Big Data Sources Big Data Transformation Big Data Platforms & Tools Big Data Analytics Applications Big Data Analytics Transformed Data Raw Data

Architecture of Big Data Analytics 10 Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications Data Mining OLAP Reports Queries Hadoop MapReduce Pig Hive Jaql Zookeeper Hbase Cassandra Oozie Avro Mahout Others Middleware Extract Transform Load Data Warehouse Traditional Format CSV, Tables * Internal * External * Multiple formats * Multiple locations * Multiple applications Big Data Sources Big Data Transformation Big Data Platforms & Tools Big Data Analytics Applications Big Data Analytics Transformed Data Raw Data Data Mining Big Data Analytics Applications

Social Big Data Mining (Hiroshi Ishikawa, 2015) 11 Source:

Architecture for Social Big Data Mining (Hiroshi Ishikawa, 2015) 12 Hardware Software Social Data Physical Layer Logical Layer Integrated analysis Multivariate analysis Application specific task Data Mining Conceptual Layer Enabling TechnologiesAnalysts Model Construction Explanation by Model Construction and confirmation of individual hypothesis Description and execution of application-specific task Integrated analysis model Natural Language Processing Information Extraction Anomaly Detection Discovery of relationships among heterogeneous data Large-scale visualization Parallel distrusted processing Source: Hiroshi Ishikawa (2015), Social Big Data Mining, CRC Press

Business Intelligence (BI) Infrastructure 13 Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Analyzing the Social Web: Social Network Analysis 14

15 Source: Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann

Social Network Analysis (SNA) Facebook TouchGraph 16

Social Network Analysis 17 Source:

Social Network Analysis A social network is a social structure of people, related (directly or indirectly) to each other through a common relation or interest Social network analysis (SNA) is the study of social networks to understand their structure and behavior 18 Source: (c) Jaideep Srivastava, Data Mining for Social Network Analysis

Centrality Prestige 19 Social Network Analysis (SNA)

Degree 20 Source: A A B B D D E E C C

Degree 21 Source: A A B B D D E E C C A: 2 B: 4 C: 2 D:1 E: 1

Density 22 Source: A A B B D D E E C C

Density 23 Source: A A B B D D E E C C Edges (Links): 5 Total Possible Edges: 10 Density: 5/10 = 0.5

Density 24 Nodes (n): 10 Edges (Links): 13 Total Possible Edges: (n * (n-1)) / 2 = (10 * 9) / 2 = 45 Density: 13/45 = 0.29 A A B B D D C C E E F F G G H H I I J J

Which Node is Most Important? 25 A A B B D D C C E E F F G G H H I I J J

Centrality Important or prominent actors are those that are linked or involved with other actors extensively. A person with extensive contacts (links) or communications with many other people in the organization is considered more important than a person with relatively fewer contacts. The links can also be called ties. A central actor is one involved in many ties. 26 Source: Bing Liu (2011), “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data”

Social Network Analysis (SNA) Degree Centrality Betweenness Centrality Closeness Centrality 27

Degree Centrality 28

29 Social Network Analysis: Degree Centrality A A B B D D C C E E F F G G H H I I J J

30 Social Network Analysis: Degree Centrality A A B B D D C C E E F F G G H H I I J J NodeScore Standardized Score A2 2/10 = 0.2 B2 C5 5/10 = 0.5 D3 3/10 = 0.3 E3 F2 2/10 = 0.2 G4 4/10 = 0.4 H3 3/10 = 0.3 I1 1/10 = 0.1 J1

Betweenness Centrality 31

Betweenness centrality: Connectivity Number of shortest paths going through the actor 32

Betweenness Centrality 33 Where g jk = the number of shortest paths connecting jk g jk (i) = the number that actor i is on. Normalized Betweenness Centrality Number of pairs of vertices excluding the vertex itself Source:

Betweenness Centrality 34 A A B B D D E E C C A: B  C: 0/1 = 0 B  D: 0/1 = 0 B  E: 0/1 = 0 C  D: 0/1 = 0 C  E: 0/1 = 0 D  E: 0/1 = 0 Total: 0 A: Betweenness Centrality = 0

Betweenness Centrality 35 A A B B D D E E C C B: A  C: 0/1 = 0 A  D: 1/1 = 1 A  E: 1/1 = 1 C  D: 1/1 = 1 C  E: 1/1 = 1 D  E: 1/1 = 1 Total: 5 B: Betweenness Centrality = 5

Betweenness Centrality 36 A A B B D D E E C C C: A  B: 0/1 = 0 A  D: 0/1 = 0 A  E: 0/1 = 0 B  D: 0/1 = 0 B  E: 0/1 = 0 D  E: 0/1 = 0 Total: 0 C: Betweenness Centrality = 0

Betweenness Centrality 37 A A B B D D E E C C A: 0 B: 5 C: 0 D: 0 E: 0

38 A A G G D D B B J J C C H H I I E E F F A A D D B B J J C C H H E E F F Which Node is Most Important?

39 A A G G D D B B J J C C H H I I E E F F A A G G D D J J H H I I E E F F Which Node is Most Important?

40 A A D D B B C C E E Betweenness Centrality

41 A A B B D D E E C C A: B  C: 0/1 = 0 B  D: 0/1 = 0 B  E: 0/1 = 0 C  D: 0/1 = 0 C  E: 0/1 = 0 D  E: 0/1 = 0 Total: 0 A: Betweenness Centrality = 0

Closeness Centrality 42

43 Social Network Analysis: Closeness Centrality A A B B D D C C E E F F G G H H I I J J C  A: 1 C  B: 1 C  D: 1 C  E: 1 C  F: 2 C  G: 1 C  H: 2 C  I: 3 C  J: 3 Total=15 C: Closeness Centrality = 15/9 = 1.67

44 Social Network Analysis: Closeness Centrality A A B B D D C C E E F F G G H H I I J J G  A: 2 G  B: 2 G  C: 1 G  D: 2 G  E: 1 G  F: 1 G  H: 1 G  I: 2 G  J: 2 Total=14 G: Closeness Centrality = 14/9 = 1.56

45 Social Network Analysis: Closeness Centrality A A B B D D C C E E F F G G H H I I J J H  A: 3 H  B: 3 H  C: 2 H  D: 2 H  E: 2 H  F: 2 H  G: 1 H  I: 1 H  J: 1 Total=17 H: Closeness Centrality = 17/9 = 1.89

46 Social Network Analysis: Closeness Centrality A A B B D D C C E E F F G G H H I I J J H: Closeness Centrality = 17/9 = 1.89 C: Closeness Centrality = 15/9 = 1.67 G: Closeness Centrality = 14/9 =

Social Network Analysis (SNA) Tools NetworkX igraph Gephi UCINet Pajek 47

Gephi The Open Graph Viz Platform 48 Source:

Application of SNA Social Network Analysis of Research Collaboration in Information Reuse and Integration 49 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Example of SNA Data Source 50 Source:

Research Question RQ1: What are the scientific collaboration patterns in the IRI research community? RQ2: Who are the prominent researchers in the IRI community? 51 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Methodology Developed a simple web focused crawler program to download literature information about all IRI papers published between 2003 and 2010 from IEEE Xplore and DBLP. – 767 paper – 1599 distinct author Developed a program to convert the list of coauthors into the format of a network file which can be readable by social network analysis software. UCINet and Pajek were used in this study for the social network analysis. 52 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Top10 prolific authors (IRI ) 1.Stuart Harvey Rubin 2.Taghi M. Khoshgoftaar 3.Shu-Ching Chen 4.Mei-Ling Shyu 5.Mohamed E. Fayad 6.Reda Alhajj 7.Du Zhang 8.Wen-Lian Hsu 9.Jason Van Hulse 10.Min-Yuh Day 53 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Data Analysis and Discussion Closeness Centrality – Collaborated widely Betweenness Centrality – Collaborated diversely Degree Centrality – Collaborated frequently Visualization of Social Network Analysis – Insight into the structural characteristics of research collaboration networks 54 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Top 20 authors with the highest closeness scores RankIDClosenessAuthor Shu-Ching Chen Stuart Harvey Rubin Mei-Ling Shyu Reda Alhajj Na Zhao Min Chen Gordon K. Lee Chengcui Zhang Isai Michel Lombera Michael Armella James B. Law Keqi Zhang Shahid Hamid Walter Z. Tang Chengjun Zhan Lin Luo Guo Chen Xin Huang Sneh Gulati Sheng-Tun Li 55 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Top 20 authors with the highest betweeness scores RankIDBetweennessAuthor Stuart Harvey Rubin Shu-Ching Chen Taghi M. Khoshgoftaar Xingquan Zhu Mei-Ling Shyu Reda Alhajj Xindong Wu Chengcui Zhang Wei Dai Narayan C. Debnath Qianhui Althea Liang Gordon K. Lee Du Zhang Baowen Xu Hongji Yang Zhiwei Xu Mohamed E. Fayad Abhijit S. Pandya Sam Hsu Wen-Lian Hsu 56 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Top 20 authors with the highest degree scores RankIDDegreeAuthor Shu-Ching Chen Stuart Harvey Rubin Taghi M. Khoshgoftaar Reda Alhajj Wen-Lian Hsu Min-Yuh Day Mei-Ling Shyu Richard Tzong-Han Tsai Eduardo Santana de Almeida Roumen Kountchev Hong-Jie Dai Narayan C. Debnath Jason Van Hulse Roumiana Kountcheva Silvio Romero de Lemos Meira Vladimir Todorov Mariofanna G. Milanova Mohamed E. Fayad Chengcui Zhang Waleed W. Smari 57 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Visualization of IRI (IEEE IRI ) co-authorship network (global view) 58 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

59 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

Visualization of Social Network Analysis 60 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

61 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration" Visualization of Social Network Analysis

62 Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration" Visualization of Social Network Analysis

Summary 63 Social Computing and Big Data Analytics Analyzing the Social Web: Social Network Analysis

References Jiawei Han and Micheline Kamber (2011), Data Mining: Concepts and Techniques, Third Edition, Elsevier Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications Hiroshi Ishikawa (2015), Social Big Data Mining, CRC Press 64

65 Social Computing and Big Data Analytics ( 社群運算大數據分析 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/ Tamkang University Time: 2016/04/18 (14:00-16:00) Place: China Airlines Q & A