For numbers 1 & 2 Solve for x and give a reason listed below for each step 1)4m - 8 = -12 2)6r – 3 = -2 ( r + 1 )

Slides:



Advertisements
Similar presentations
2.2 Biconditional Statements
Advertisements

Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-4
Warm Up Solve each equation t – 7 = 8t (y – 5) – 20 = 0 x = 7 r = 12.2 or n = 17 y = 15.
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Welcome to our Unit on Logic. Over the next three days, you will be learning the basics.
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Warm Up Write a conditional statement from each of the following. 1. The intersection of two lines is a point. 2. An odd number is one more than a multiple.
Holt Geometry 2-4 Biconditional Statements and Definitions 2-4 Biconditional Statements and Definitions Holt Geometry Warm Up Warm Up Lesson Presentation.
Algebraic Proofs. Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = t – 7 = 8t (y – 5) – 20 = 0 x = 4 r = 12.2 n = –38 y = 15.
2-5 Algebraic proofs. SAT Problem of the day The volume and surface area of a cube are equal. What is the length of an edge of this cube? A) 1 B) 2 C)4.
Obj. 7 Algebraic Proof proof – an argument which uses logic, definitions, properties, and previously proven statements algebraic proof – A proof which.
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Holt Geometry 2-4 Biconditional Statements and Definitions 2-4 Biconditional Statements and Definitions Holt Geometry Warm Up Warm Up Lesson Presentation.
GEOMETRY 4-5 Using indirect reasoning Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
2-3 Algebraic Proof Section 2.3 Holt McDougal Geometry Holt Geometry.
Objectives Review properties of equality and use them to write algebraic proofs.
Holt Geometry 2-4 Biconditional Statements and Definitions 2-4 Biconditional Statements and Definitions Holt Geometry Warm Up Warm Up Lesson Presentation.
Holt Geometry 2-5 Algebraic Proof 2-5 Algebraic Proof Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Success Criteria:  I can write good definitions  I can identify good definitions Today 1.Do Now 2.Check HW #13 3.Lesson HW # 14 Do Now Write a.
Geometry 2.5 Big Idea: Reason Using Properties from Algebra.
2-5 Reasoning with Properties from Algebraic Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Welcome to our Unit on Logic. Over the next three days, you will be learning the basics.
Holt McDougal Geometry 2-4 Biconditional Statements and Definitions DO NOW Write a conditional statement from each of the following. 1. The intersection.
2.4 Reasoning with Properties from Algebra (for geometry proof) p. 89 ?
Holt Geometry 2-5 Algebraic Proof 2-5 Algebraic Proof Holt Geometry.
2.4 Reasoning with Properties from Algebra ?. What are we doing, & Why are we doing this?  In algebra, you did things because you were told to….  In.
Postulate: A statement that is accepted without proof Theorem: An important statement that can be proven.
Holt Geometry 2-5 Algebraic Proof Warm Up Solve each equation. 1. 3x + 5 = t – 7 = 8t (y – 5) – 20 = 0 x = 4 n = –38 y = 15 t = – 5252.
Chapter 2 Reasoning and Proof
2.5 Reasoning with Properties from Algebra
Unit 2: Deductive Reasoning
Biconditional Statements and Definitions 2-4
Objectives Students will…
9. Deductive D Inductive H Invalid Valid (2.5, 3.5)
Biconditional Statements and Definitions 2-4
2.4 Algebraic Reasoning.
Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Objective Students will… Write and analyze biconditional statements.
Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-4
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
2-5 Algebraic Proof.
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Chapter 2.5 Reasoning in Algebra and Geometry
Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-4
Warm Up Determine whether each statement is true or false. If false, give a counterexample. 1. It two angles are complementary, then they are not congruent.
Biconditional Statements and Definitions 2-4
Biconditional Statements and Definitions 2-2
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Biconditional Statements and Definitions 2-4
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
Biconditional Statements and Definitions 2-4
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Biconditional Statements and Definitions 2-4
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Objective Write and analyze biconditional statements.
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
Biconditional Statements and Definitions 2-4
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Objective SWBAT use the properties of equality to write algebraic proofs. HW Page 107 {3-15 odd, 23, 25, 31}
Warm Up Solve each equation. 1. 3x + 5 = r – 3.5 = 8.7
2-5 Algebraic Proof Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

For numbers 1 & 2 Solve for x and give a reason listed below for each step 1)4m - 8 = -12 2)6r – 3 = -2 ( r + 1 )

Solve the equation 4m – 8 = –12. Write a justification for each step. Solving an Equation in Algebra 4m – 8 = –12 Given equation Addition Property of Equality 4m = –4 Simplify. m =–1 Simplify. Division Property of Equality

Algebraic Proof Solve each equation. Write a justification for each step. 2. 6r – 3 = –2(r + 1) Given 6r – 3 = –2r – 2 8r – 3 = –2 Distrib. Prop. Add. Prop. of = 6r – 3 = –2(r + 1) 8r = 1Add. Prop. of = Div. Prop. of =

Properties of Equality & Congruence Identify the property that justifies each statement. a. DE = GH, so GH = DE. b. 94° = 94° c. 0 = a, and a = x. So 0 = x. d. A  Y, so Y  A Sym. Prop. of = Reflex. Prop. of = Trans. Prop. of = Sym. Prop. of 

Identify the property that justifies each statement. A. QRS  QRS B. m1 = m2 so m2 = m1 C. AB  CD and CD  EF, so AB  EF. D. 32° = 32° Identifying Property of Equality & Congruence Symm. Prop. of = Trans. Prop of  Reflex. Prop. of = Reflex. Prop. of .

Solve for x & Write a justification for each step. Solving an Equation in Geometry NO = NM + MO 4x – 4 = 2x + (3x – 9) Substitution Property of Equality Segment Addition Post. 4x – 4 = 5x – 9 Simplify. –4 = x – 9 5 = x Addition Property of Equality Subtraction Property of Equality

Solve for x & Write a justification for each step. x = 11 Subst. Prop. of Equality 8x° = (3x + 5)° + (6x – 16)° 8x = 9x – 11 Simplify. –x = –11 Subtr. Prop. of Equality. Mult. Prop. of Equality.  Add. Post. mABC = mABD + mDBC Solving an Equation in Geometry

Warm Up Write a conditional statement from each of the following. 1. The intersection of two lines is a point. 2. An odd number is one more than a multiple of Write the converse of the conditional “If Pedro lives in Chicago, then he lives in Illinois.” Find its truth value. If two lines intersect, then they intersect at a point. If a number is odd, then it is one more than a multiple of 2. If Pedro lives in Illinois, then he lives in Chicago; False.

When you combine a conditional statement and its converse, you create a biconditional statement. A biconditional statement is a statement that can be written in the form “p if and only if q.” This means “if p, then q” and “if q, then p.” Biconditional Statements

Conditional Statements For the conditional, write the converse and a biconditional statement. If points lie on the same line, then they are collinear. Converse: If points are collinear, then they lie on the same line. Biconditional: Points lie on the same line if and only if they are collinear.

Determine if the biconditional is true. If false, give a counterexample. Example : Analyzing the Truth Value of a Biconditional Statement A rectangle has side lengths of 12 cm and 25 cm if and only if its area is 300 cm 2.

Example : Analyzing the Truth Value of a Biconditional Statement Conditional: If a rectangle has side lengths of 12 cm and 25 cm, then its area is 300 cm 2. Converse: If a rectangle’s area is 300 cm 2, then it has side lengths of 12 cm and 25 cm. The conditional is true. The converse is false. If a rectangle’s area is 300 cm 2, it could have side lengths of 10 cm and 30 cm. Because the converse is false, the biconditional is false.

Lesson Quiz 1. For the conditional “If an angle is right, then its measure is 90°,” write the converse and a biconditional statement. 2. Determine if the biconditional “Two angles are complementary if and only if they are both acute” is true. If false, give a counterexample. False; possible answer: 30° and 40° Converse: If an  measures 90°, then the  is right. Biconditional: An  is right iff its measure is 90°. 3. Write the definition “An acute triangle is a triangle with three acute angles” as a biconditional. A triangle is acute iff it has 3 acute s.