Synchrotron Radiation Lecture 1 Introduction to Synchrotron Radiation Jim Clarke ASTeC Daresbury Laboratory.

Slides:



Advertisements
Similar presentations
1 Diamond RAL Particle Physics Masterclass 12 March 2003 Glenn Patrick
Advertisements

Eric Prebys, FNAL. USPAS, Knoxville, TN, Jan , 2014 Lecture 13 - Synchrotron Radiation 2 For a relativistic particle, the total radiated power (S&E.
Interference and Diffraction
Electromagnetic Waves
Eric Prebys USPAS, Hampton, VA  Wikipedia lists about 60 light sources worldwide USPAS, Hampton, VA 2015Special Topic - Light Sources 2.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
Necessity of Moving from Green Book to White Book M. Hadi Hadizadeh Yazdi International Scientific Meetings Office Iran October 26, 2002 Amman, Jordan.
Synchrotron Radiation What is it ? Rate of energy loss Longitudinal damping Transverse damping Quantum fluctuations Wigglers Rende Steerenberg (BE/OP)
LIGHT A FORM OF ELECTROMAGNETIC RADIATION THAT STIMULATES THE EYE.
Chapter 16 Wave Motion.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Chapter 22: Electromagnetic Waves
Physics of fusion power Lecture 11: Diagnostics / heating.
Longitudinal motion: The basic synchrotron equations. What is Transition ? RF systems. Motion of low & high energy particles. Acceleration. What are Adiabatic.
Accelerator Physics: Synchrotron radiation Lecture 2 Henrik Kjeldsen – ISA.
Beam Dynamics Tutorial, L. Rivkin, EPFL & PSI, Prague, September 2014 Synchrotron radiation in LHC: spectrum and dynamics The Large Hadron Collider (LHC)
Eric Prebys, FNAL.  We consider motion of particles either through a linear structure or in a circular ring USPAS, Knoxville, TN, Jan , 2014 Lecture.
Prajwal T. Mohan Murthy Laboratory for Nuclear Science, MIT νDM Group Spin-Light Polarimeter for the Electron Ion Collider EIC Users Meeting 2014 Jun 2014.
X-rays are electromagnetic waves (like light) and have a wavelength about the size of atoms. From
R. Bartolini, John Adams Institute, 19 November 20101/30 Electron beam dynamics in storage rings Synchrotron radiation and its effect on electron dynamics.
Syllabus and slides Lecture 1: Overview and history of Particle accelerators (EW) Lecture 2: Beam optics I (transverse) (EW) Lecture 3: Beam optics II.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 25 Physics, 4 th Edition James S. Walker.
Special Relativity Quiz 9.4 and a few comments on quiz 8.24.
General electric flux definition
Vibration and Waves AP Physics Chapter 11.
Lecture 3 - E. Wilson - 22 Oct 2014 –- Slide 1 Lecture 3 - Magnets and Transverse Dynamics I ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Electromagnetic radiation sources based on relativistic electron and ion beams E.G.Bessonov 1.Introduction 2.Spontaneous and stimulated emission of electromagnetic.
Synchrotron Radiation Sources Past, Present and Future
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
ELECTRODYNAMICS. Electrodynamics: The Study of Electromagnetic Interactions Magnetism is caused by charge in motion. –Charges at rest have just an electric.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Properties of Synchrotron Radiation Presentation at JASS02 Seminar; Jordan, Oct , 2002 Herman Winick, SSRL/SLAC, Stanford University.
Eric Prebys USPAS, Knoxville, TN, Jan , 2014.
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
Waves and Sound AP Physics B. What is a wave A ______ is a vibration or disturbance in space. A _____________ is the substance that all SOUND WAVES travel.
Eric Prebys, FNAL.  In terms of total charge and current  In terms of free charge an current USPAS, Knoxville, TN, January 20-31, 2013 Lecture 2 - Basic.
Advanced EM - Master in Physics We have now calculated all the intermediate derivatives which we need for calculating the fields E and B. We.
Synchrotron Radiation
Module 6Aberration and Doppler Shift of Light1 Module 6 Aberration and Doppler Shift of Light The term aberration used here means deviation. If a light.
ELECTRON MOVING AT CONSTANT VELOCITY
Lecture 5 Damping Ring Basics Susanna Guiducci (INFN-LNF) May 21, 2006 ILC Accelerator school.
Chapter 25 Electromagnetic Waves. Units of Chapter 25 The Production of Electromagnetic Waves The Propagation of Electromagnetic Waves The Electromagnetic.
Adams Accelerator Institute 10 - E. Wilson - 1/24/ Slide 1 Lecture 14 ACCELERATOR PHYSICS MT 2004 E. J. N. Wilson.
Chapter Concept of Radiation.
1 Linear Wave Equation The maximum values of the transverse speed and transverse acceleration are v y, max =  A a y, max =  2 A The transverse speed.
DESY Deutsches Electron Synchrotron Shima Bayesteh.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
Today’s Lecture Interference Diffraction Gratings Electron Diffraction
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Motion in an Undulator Sven Reiche :: SwissFEL Beam Dynamics Group :: Paul Scherrer Institute CERN Accelerator School.
Lecture 1: Synchrotron radiation Lecture 2: Undulators and Wigglers
Lecture 1: Synchrotron radiation Lecture 2: Undulators and Wigglers
04/10/2015PHY 712 Spring Lecture 301 PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 30: Finish reading Chap. 14 – Radiation from.
Eric Prebys, FNAL. USPAS, Ft. Collins, CO June 13-24, 2016 E. Prebys - Accelerator Fundamentals, Synchrotron Radiation 2 For a relativistic particle,
Synchrotron Radiation Lecture 2 Undulators Jim Clarke ASTeC Daresbury Laboratory.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
Jim Clarke STFC Daresbury Laboratory, UK & The Cockcroft Institute, UK
Beam Dynamics in Electron Storage Ring
Introduction to Synchrotron Radiation
How do we obtain detailed information about the Universe?
Lecture 15 ACCELERATOR PHYSICS MT 2004 E. J. N. Wilson.
Специализированный источник синхротронного излучения Anka Характеристики и экспериментальные возможности.
Jim Clarke ASTeC Daresbury Laboratory March 2006
Accelerator Physics NMI and Synchrotron Radiation
Accelerator Physics Synchrotron Radiation
USPAS Course on 4th Generation Light Sources II
Electron Rings 2 Eduard Pozdeyev.
Presentation transcript:

Synchrotron Radiation Lecture 1 Introduction to Synchrotron Radiation Jim Clarke ASTeC Daresbury Laboratory

2 Program 1. Introduction to SR 2. Undulators 3. Undulator Magnet Designs Please interrupt and ask questions during the lectures !!!

3 Course Book The vast majority of the material presented is from my book, you will find much more detail in there, derivations of all the equations, and also other supplementary information. The Science and Technology of Undulators and Wigglers, J. A. Clarke, Oxford University Press, 2004 (Oxford series on Synchrotron Radiation - 4) It is available in the Daresbury Library

Why is Synchrotron Radiation so Important? All accelerator scientists and engineers need to understand SR as it impacts directly on many areas of accelerator design and performance o RF o Diagnostics o Vacuum design o Magnets o Beam Dynamics o It affects all charged particles o Light sources and Free Electron Lasers are a major “customer” of advanced accelerators All processes which change the energy of particles are important – SR is one of the most important processes 4

5 Introduction to Synchrotron Radiation Synchrotron Radiation (SR) is a relativistic effect Many features can be understood in terms of two basic processes: Lorentz contraction and Doppler shift Imagine that a relativistic charged particle is travelling through a periodic magnetic field (an undulator) In the particles rest frame it sees a magnetic field rushing towards it If in our rest frame the magnet period isthen because of Lorentz contraction the electron sees it as  is the relativistic Lorentz factor

6 Lorentz Factor c is the velocity of light in free space v is the velocity of the electron  is the relative velocity of the electron E is the Electron Energy (3000 MeV in DIAMOND) E o is the Electron Rest Energy (0.511 MeV) So in DIAMOND,  ~ 6000 This  factor turns up again and again in SR !

7 Relativistic Doppler Shift

8 In the relativistic version of the Doppler effect the frequency of light seen by an observer at rest is where f’ is the frequency emitted by the moving source,  ’ is the angle at which the source emits the light. With the source travelling towards the observer so In terms of wavelength Source travelling away from the observer

9 Combining Lorentz and Doppler So the particle emits light of wavelength Since it is travelling towards us this wavelength is further reduced by a factor So the wavelength observed will be ~ For GeV electron energies with  of 1000’s, an undulator with a period of a few cm will provide radiation with wavelengths of nm (X-rays)

10 Angle of Emission In the moving frame of the electron, the electron is oscillating in the periodic magnetic field with simple harmonic motion It therefore emits in the familiar dipole pattern that has a distribution

11 Angle of Emission In the moving frame of the electron, the electron is oscillating in the periodic magnetic field with simple harmonic motion It therefore emits in the familiar dipole pattern that has a distribution Electric field lines due to a vertically oscillating dipole

12 Angle of Emission A second consequence of Doppler is that the angle with which the observer views the source will also be affected So the point at which the electric dipole has zero amplitude (  ’ = ±  /2) appears at the angle  ±1/  The peak of the emission is orthogonal to the direction of the electrons acceleration so for an electron on a circular path the radiation is emitted in a forward cone at a tangent to the circle

13 Effect of Relativity Fernando Sannibale, USPAS, Jan 2006

14 SR from Bending Magnets A bending magnet or dipole has a uniform magnetic field The electron travels on the arc of a circle of radius set by the magnetic field strength Horizontally the light beam sweeps out like a lighthouse - the intensity is flat with horizontal angle Vertically it is in a narrow cone of typically  1/  radians

15 Summary of the Three Basic Sources Bending magnet or Dipole (Multipole) Wiggler Undulator

16 A Typical Spectrum

17 Definition of SR Synchrotron Radiation is electromagnetic radiation that is emitted by relativistic charged particles due to their acceleration.

18 The First Ever Recorded Observation The Crab nebula is the expanding remains of a star’s supernova explosion that was observed by Chinese & Japanese astronomers in the year 1054 AD. At the heart of the nebula is a rapidly-spinning neutron star, a pulsar, and it powers the strongly polarised bluish 'synchrotron' nebula. Image taken by the Hubble Space Telescope

19 A Brief History of SR – First Use 1 st Generation SR sources Electron synchrotrons start to be built for high energy physics use (rapidly cycling accelerators not Storage Rings!) There is interest from other physicists in using the “waste” SR The first users are parasitic The first beamline on NINA at Daresbury constructed in 1966/67 by Manchester University NINA was a 5 GeV electron synchrotron devoted to particle physics

20 A Brief History of SR – Dedicated Facilities 2 nd Generation SR sources Purpose built accelerators start to be built – late 70’s First users ~1980 (at SRS, Daresbury) Based primarily upon bending magnet radiation The VUV ring at Brookhaven in 1980 before the beamlines are fitted Not much room for undulators!

21 A Brief History of SR – Enhanced Facilities 3 rd Generation SR sources Primary light source is now the undulator First built in the late 80’s/early 90’s First users ~1994 ESRF, Grenoble Diamond, UK

22 A Brief History of SR – The Next Generation 4 th Generation SR sources Now the most advanced light source is the single pass Free Electron Laser First built ~2000 First users ~2006 FLASH FEL facility at DESY, Germany FELs are totally reliant upon undulators

The Impact of X-Rays on Science 1901 Rontgen (Physics) 1914 von Laue (Physics) 1915 Bragg and Bragg (Physics) 1917 Barkla (Physics) 1924 Siegbahn (Physics) 1927 Compton (Physics) 1936 Debye (Chemistry) 1946 Muller (Medicine) 1962 Crick, Watson & Wilkins (Medicine) 1962 Perutz and Kendrew (Chemistry) 1964 Hodgkin (Chemistry) 1976 Lipscomb (Chemistry) 1979 Cormack Hounsfield (Medicine) 1981 Siegbahn (Physics) 1985 Hauptman and Karle (Chemistry) 1988 Deisenhofer, Huber & Michel (Chemistry) 1997 Boyer and Walker (Chemistry) 2003 Agre and Mackinnon (Chemistry) 2006 Kornberg (Chemistry) 2009 Yonath, Steitz & Ramakrishnan (Chemistry) 2012 Lefkowitz and Kobilka (Chemistry) Nobel Prizes so far … These last 5 all relied on SR, 2 of them used the SRS at Daresbury

24 SR from a Bending Magnet A bending magnet is a uniform dipole The electron moves on purely circular path Angular velocity:  is the bending radius

25 Critical Frequency in a Bending Magnet If we integrate the power emitted from 0 tothen we find that it contains half the total power emitted In other words, splits the power spectrum for a bending magnet into two equal halves It is a useful parameter, and it can be used to compare bending magnet sources Expressed as a wavelength or a photon energy:

26 Vertical Angular Power Distribution The maximum power is emitted on axis The power is symmetrical with vertical angle There is no vertically polarised power on axis Majority of power within ±1/ 

27 The On Axis Spectral Angular Flux Density In units of photons/s/mrad 2 /0.1% bandwidth E is the electron energy in GeV, I b is the beam current in A K 2/3 is a “modified” Bessel function Monochromator bandwidth

28 Example Angular Flux Density 3 GeV 300 mA 1.4 T Dipole Note the change of scales! Low f High f

29 The spectral photon flux or the vertically integrated spectral flux is given by in units of photons/s/mrad horizontally/0.1% bandwidth Photon Flux

30 Examples for Photon Flux log-linear scale, 200mA beam current assumed for all sources Flux  Energy

31 Power Virtually all SR facilities have melted vacuum chambers or other components due to the SR hitting an uncooled surface The average power is high but the power density is very high – the power is concentrated in a tight beam. The total power emitted by an electron beam in 360  of bending magnets is where the power is in kW, E is in GeV, I b is in A,  0 is in m. Other useful values are the power per horizontal angle (in W/mrad) and power density on axis (in W/mrad 2 )

32 Examples All this power has to come from the RF system – very expensive!

33 Bending Magnet Spectrum A plot ofgives the universal curve All flux plots from bending magnets have the same characteristic shape Once the critical energy is known it is easy to find (scale off) the photon flux The amplitude changes with E and I b so higher energies and higher beam currents give more flux Note the log-log scale

34 Bending Magnet Spectrum In a storage ring of fixed energy, the spectrum can be shifted sideways along the photon energy axis if a different critical energy can be generated. Need to change  (B Field) Used especially to shift the rapidly falling edge (high energy photons, short wavelengths) Special magnets that do this are called wavelength shifters An alternative is to replace individual bending magnets with higher strength ones (superbends) – this is not so popular but it has been done

35 Wavelength Shifters Shift the critical energy by locally changing the bending magnet field The shape of the curve is unchanged but the spectrum is shifted SRS Example 1.2 T BM & 6 T WS. 2 GeV, 200 mA. Flux at 30 keV increased by x100 Photon energy (eV)

36 Wavelength Shifters How can you put a high magnetic field into a ring? A popular solution is to use 3 magnets to create a chicane-like trajectory on the electron beam in a straight section The central magnet is the high field bending magnet source Before After

37 Electron trajectory in a Wavelength Shifter The electron enters on axis and exits on axis (“Insertion Device”) The peak of the trajectory bump occurs at the peak magnetic field – when the angle is zero SR emitted here will travel parallel to the beam axis (at a tangent to the trajectory) SR

38 Examples of Wavelength Shifters SRS 6T (central pole) wavelength shifter Spring-8 10T wiggler Wavelength shifters are always superconducting magnets

39 Extension to Multipole Wigglers One wavelength shifter will give enhanced flux at high photon energies SR is emitted parallel to the axis at the peak of the main pole Imagine many WS installed next to each other in the same straight … SR

40 Multiple Wavelength Shifters Each WS would be an independent source of SR – all emitting in the forward direction. The observer (on-axis) would see SR from all 3 Source points The observer will therefore see 3 times more flux This is the basic concept for a multipole wiggler Three separate WS is not the most efficient use of the space! A better way of packing more high field emitters into a straight is… B field is usually close to sinusoidal

41 Multipole Wigglers – Electron Trajectory Electrons travelling in the s direction Assuming small angular deflections The equations of motion for the electron are If we have a MPW which only deflects in the horizontal plane (x) - only has vertical fields (B y ) on axis

42 Angular Deflection The B field is assumed to be sinusoidal with period Integrate once to findwhich is the horizontal angular deflection from the s axis Therefore, the peak angular deflection is Define the deflection parameter (B 0 in T, u in m)

43 Trajectory One more integration gives The peak angular deflection is Remember that SR is emitted with a typical angle of So ifthe electron trajectory will overlap with the emitted cone of SR (an undulator) Ifthere will be little overlap and the source points are effectively independent – this is the case for a MPW The boundary between an undulator and a MPW is not actually so black and white as this!

44 MPW Flux MPW can be considered a series of dipoles, one after the other There are two source points per period The flux is simply the product of the number of source points and the dipole flux for that critical energy The MPW has two clear advantages The critical energy can be set to suit the science need The Flux is enhanced by twice number of periods 300mA, 3 GeV beam 1.4T dipole 6T WS 1.6T, MPW with 45 periods (2 poles per period so x90 flux)

45 MPW Power The total power emitted by a beam of electrons passing through any magnet system is This is a general result – can get the earlier bending magnet result from here. For a sinusoidal magnetic field with peak value the integral is and so the total power emitted is (in W)

46 Power Density The power is contained in ±K/  horizontally for large K Vertically, the power is contained in ~ ±1/ 

47 On-Axis power density The Peak power density is on-axis Undulators MPWs

48 Summary Synchrotron Radiation is emitted by accelerated charged particles The combination of Lorentz contraction and the Doppler shift turns the cm length scale into nm wavelengths (making SR the best possible source of X-rays) Bending magnet radiation is characterised by a critical frequency The power levels emitted can be quite extreme in terms of the total power and also the power density Wavelength shifters are used to ‘shift’ the spectrum so that shorter wavelengths are generated Insertion Devices are added to accelerators to produce light that is specifically tailored to the experimental requirements (wavelength, flux, brightness, polarisation, …) Multipole wigglers are periodic, high field devices, used to generate enhanced flux levels (proportional to the number of poles)