Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.

Slides:



Advertisements
Similar presentations
Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Advertisements

Neutrino-induced meson productions Satoshi Nakamura Osaka University, Japan Collaborators : H. Kamano (RCNP, Osaka Univ.), T. Sato (Osaka Univ.) T.-S.H.
Neutrino-interactions in resonance region Satoshi Nakamura Osaka University Collaborators : H. Kamano (RCNP, Osaka Univ.), T. Sato (Osaka Univ.)
1 Alfred Švarc Ruđer Bošković Institute Croatia Bare propagator poles in coupled-channel models (Possible link between microscopic theories and phenomenological.
Status of two pion production in πN IntroductionIntroduction Summary of ππN dataSummary of ππN data Isobar-model formalismIsobar-model formalism Parametrization.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on “Few-body Problems.
Status of Baryon Spectroscopy D. Mark Manley Kent State University Kent, OH USA GHP2004 First Meeting of the APS Topical Group on Hadronic Physics.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
Highlights on hadron physics at CLAS K. Hicks JAEA Seminar May 18, 2012.
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
Baryon Spectroscopy at Jlab and J-PARC K. Hicks (Ohio U.) Baryons2013 Conference 24 June 2013.
Dynamical Coupled Channel Approach for Meson Production Reaction T. Sato Osaka U./KEK  Motivation  Analysis of meson production reaction and dynamical.
Recent results on N* spectroscopy with ANL-Osaka dynamical coupled-channels approach [Kamano, Nakamura, Lee, Sato, PRC88 (2013) ] Hiroyuki Kamano.
Resonance nature of light-flavor baryons Hiroyuki Kamano (RCNP, Osaka U.) RCNP/Kyushu U. Workshop, Kyushu U., Sep. 4-6, 2013 Contents:  Recent direction.
ニュートリノ原子核反応 佐藤 透 ( 阪大 理 ) JPARC Dec Our previous works on neutrino reaction single pion production(Delta region) nuclear coherent pion production.
Meson spectroscopy with unitary coupled-channels model Satoshi Nakamura Excited Baryon Analysis Center (EBAC), JLab Collaborators : H. Kamano (RCNP), T.-S.H.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Dynamical Coupled-Channels Approach for Single- and Double-Pion Electroproductions: Status and Plans Hiroyuki Kamano Research Center for Nuclear Physics.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
N* spectroscopy with meson photoproduction reactions Hiroyuki Kamano (RCNP, Osaka U.) 東北大ELPH研究会「GeV領域光子で探るメソン生成反応の物理」 Feb , 2014 Collaborators :
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
Nucleon Resonances in  Scattering up to energies W < 2.0 GeV  introduction  a meson-exchange model for  scattering  conventional resonance parameters.
1 DMT model for πN scattering and pion e.m. production Shin Nan Yang National Taiwan University DMT model for πN scattering and pion e.m. production Shin.
1 Study of resonances with Dubna-Mainz-Taipei (DMT) dynamical model Shin Nan Yang National Taiwan University Study of resonances with Dubna-Mainz-Taipei.
Results of Nucleon Resonance Extraction via Dynamical Coupled-Channels Analysis from EBAC Hiroyuki Kamano (RCNP, Osaka U.) QNP2012, Palaiseau,
N* Spectrum from ANL-Osaka Dynamical Coupled-Channels Analysis of Pion- and Photon-induced Meson Production Reactions Hiroyuki Kamano Research Center for.
Meson Photoproduction with Polarized Targets   production a)  0 at threshold b) Roper and P 11 (1710)   production a) S 11 -D 13 phase rotation.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
PLAUSIBLE EXPLANATION FOR THE   (2000) PUZZLE HADRON 2011 XIV International Conference On Hadron Spectroscopy München, June 2011.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Dynamical Coupled-Channels Approach to Meson Production Reactions and N* Spectroscopy Hiroyuki Kamano (RCNP, Osaka U.) April 11, 2012.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Nucleon Resonances from DCC Analysis of for Confinement Physics T.-S. Harry Lee Argonne National Laboratory Workshop on “Confinement.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
V.I.Mokeev Hadron2011, June 13 –17, 2011, Munich Nucleon resonance electrocouplings from CLAS data on pion electroproduction V.I. Mokeev, I.G. Aznauryan,
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Overview of the progress B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain) The players: ¨
The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
Reaction models of meson production reactions B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
Spectroscopy of S=-1 hyperon resonances with antikaon-induced meson-production reactions Hiroyuki Kamano (KEK) December 12th, 2016.
Dynamical coupled-channels approach to meson-production reactions in the nucleon resonance region Hiroyuki Kamano (KEK) nd HaPhy meeting “Hadron.
Generalities of the reaction approaches
Hadron excitations as resonant particles in hadron reactions
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Vector meson photoproduction
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Meson Production reaction on the N* resonance region
Low energy reaction π- p→ K0Λ and the properties of N*(1720)
Current Status of EBAC Project
EBAC-DCC combined analysis of world data on pN and gN processes
On the analytic structure of the KN - pS scattering amplitudes
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, S. Nakamura, T. Sato, N. Suzuki 7 th Japan-China Joint Nuclear Physics Symposium, Nov , Univ. of Tsukuba

Outline Excited Baryon Analysis Center (EBAC) at Jefferson Lab Dynamical origin of P11 nucleon resonances

Most of their properties were extracted from Are they all genuine quark/gluon excitations (with meson cloud) ? Is their origin dynamical ?  some could be understood as arising from meson-baryon dynamics Need consistent analysis including inelastic channels (  N,  N, KY,  N, …) PDG *s and N*’s origincore meson cloud mesonbaryon ? ? ? ? ? Arndt, Briscoe, Strakovsky, Workman PRC (2006)

Objectives and goals: Through the comprehensive analysis of world data of  N,  N, N(e,e’) reactions, Determine N* spectrum (masses, widths) Extract N* form factors, in particular the N-N* e.m. transition form factors Provide reaction mechanism information for interpreting the N* properties Excited Baryon Analysis Center (EBAC) at Jefferson Lab N* properties QCDQCDQCDQCD Lattice QCDHadron Models Dynamical Coupled-Channels EBAC Reaction Data Founded in January 2006 Theory support for Excited Baryon Program by (arXiv: ) Careful treatment of couplings between multi-reaction channels is necessary !! A. Matsuyama, T. Sato, T.-S.H. Lee Phys. Rep. 439 (2007) 193 “Dynamical coupled-channels model of meson production reactions”

Partial wave (LSJ) amplitude of a  b reaction: Reaction channels: Potential: coupled-channels effect Dynamical coupled-channels EBAC For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007) ground meson-baryon exchange ground meson-baryon exchange bare N* state

Current status of the EBAC-DCC analysis  N   N : model constructed up to W = 2 GeV. Julia-Diaz, Lee, Matsuyama, Sato, PRC (2007)  N    N : cross sections calculated with the  N model; fit is ongoing. Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC (2009)  N   N : model constructed up to W = 2 GeV Durand, Julia-Diaz, Lee, Saghai, Sato, PRC (2008)   N   N : model constructed up to W = 1.6 GeV (& up to Q 2 = 1.5 GeV 2 ) (photoproduction) Julia-Diaz, Lee, Matsuyama, Sato, Smith, PRC (2008) (electroproduction)Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, PRC (2009)  N    N : cross sections calculated with the  N &  N model; fit is ongoing. Kamano, Julia-Diaz, Lee, Matsuyama, Sato, arXiv: [nucl-th]   N   N : in progress  N  KY  N : in progress Hadronic part Electromagnetic part

Analysis of pi N  pi N & eta N reactions Julia-Diaz, Lee, Matsuyama, Sato, PRC (2007) Durand, Julia-Diaz, Lee, Saghai, Sato, PRC (2008) Differential cross sections and polarizations are also well reproduced !

Constructed pi N partial wave amplitudes Julia-Diaz, Lee, Matsuyama, Sato, PRC (2007) Real part Imaginary part Isospin = 1/2 EBAC SAID06 W (MeV)

How can we extract N* information? PROPER definition of N* mass and width  Pole position of the amplitudes N*  MB,  N decay vertices  Residue of the pole N* pole position ( Im(E 0 ) < 0 ) N* pole position ( Im(E 0 ) < 0 ) N*  b decay vertex N*  b decay vertex Need analytic continuation of the amplitudes !!  Suzuki, Sato, Lee, PRC (2009); arXiv:

Dynamical origin of P11 nucleon resonances Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato arXiv: Two almost degenerate poles in the Roper resonance region. 2.All three poles below 2 GeV evolve from a same, single bare state. Im E (MeV) Re E (MeV) 100 Findings: P11 N* resonances in the EBAC-DCC model P11 N* resonances in the EBAC-DCC model Eden, Taylor, Phys. Rev. 133 B1575 (1964) Multi-channels reactions can generate many resonance poles from a single bare state!! e.g.) Two poles for J  = 3/2 + resonance in He 5 Hale, Brown, Jarmie, PRL (1987)

Analytic structure of the scattering amplitudes × × physical sheet Re (E) Im (E) 0 0 Re (E) unphysical sheet E th (branch point) E + i  (“real world”) E th (branch point) Scattering amplitude is a double-valued function of E !! Scattering amplitude is a double-valued function of E !! e.g.) single-channel meson-baryon scattering N-channels  Need 2 N Riemann sheets 2-channel case (4 sheets): (channel 1, channel 2) = (p, p), (u, p),(p, u), (u, u) p = physical sheet u = unphysical sheet 2-channel case (4 sheets): (channel 1, channel 2) = (p, p), (u, p),(p, u), (u, u) p = physical sheet u = unphysical sheet

Re E (MeV) Im E (MeV)  threshold C:1820–248i B:1364–105i  N threshold  N threshold A:1357–76i Bare state Dynamical evolution of P11 resonances Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato arXiv: (  N,  N,  ) = (u, u, u) (  N,  N,  ) = (p, u, - ) (  N,  N,  ) = (p, u, p)(  N,  N,  ) = (p, u, u) Trajectory of N* propagator Trajectory of N* propagator (  N,  N) = (u,p) for three P11 poles self-energy:

Summary Continuous effort for exploring the N* states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Scattering amplitudes are successfully constructed by dynamical coupled-channels analysis of meson production reactions. Dynamical origin of the P11 nucleon resonances:  Two resonance poles are found in the Roper energy region.  (Two) Roper and N*(1710) originate from a same, single bare state. Treatment of multi-reaction channels is key to understanding the N* spectrum !!

back up

Real part Imaginary part Constructed pi N partial wave amplitudes Isospin = 3/2 Julia-Diaz, Lee, Matsuyama, Sato, PRC (2007) EBAC SAID06

All extracted N*s originate from bare N* states. (At present no molecular-type resonances are found.) Comparison with PDG values Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato arXiv: PDG values are close to ours! 1540 –191i 1642 –41i L 2I 2J

EBAC-DCCArndt06Doring09HoelerCutkosky R,φ S11(1535) , -4216,-1631, /-40,15+/-45 S11(1650) , -9314,-6955,-4439,-2760+/-10,-75+/-25 S31(1620) , ,-9212,-10819,-9515+/-2,-110+/-20 P11(1440) , ,-9848,-6440,--52+/-5,-100+/-35 P , -9986,-46 P33 (1232) , -4652,-4747,-3750,-4853+/-2,-47+/-1 D33(1700) , -5918,-4016,-3810,--13+/-3,-20+/-25 D13(1520) , 738,-532,-1832,-835+/-2,-12+/-5 D15(1675) , -2427,-2123,-2231+/-5,-30+/-19 F15(1680) , -1142,-444,-1734+/-2,-25+/-5 F35(1905) 17385, -7915,-3025,--25+/-8,-50+/-20 F , 25 F37(1950) , -3353,-3147,-3250+/-7,-33+/-8 Residue of resonance poles in pi N amplitude

EBAC-DCCAhrens04/02Arndt04/02Dugger07Blanpied01 P33(1211)A3/ i-258 +/ / /-1.6+/-7.8 A1/ i-137 +/ / /-1.3+/-3.7 D13(1521)A3/ i147 +/ / /- 2 A1/ i-38 +/ / /- 2 P11(1357)A1/ i -63 +/ /- 2 (1364)A1/ i S11(1540)A1/ i60 +/ /- 2 (1642)A1/229 – 17i69 +/ /- 7 D15(1654)A3/244 – 9i10 +/ /- 1 A1/258 – 0.5i15 +/ /- 2 F15(1674)A3/ i145 +/ /- 2 A1/ i-10 +/ /- 1 S31(1563)A1/2137 – 70i 35 +/ /- 2 D33(1604)A3/ i 97 +/ /- 3 A1/ i90 +/ /- 3 Helicity amplitudes of N-N* e.m. transition (Q 2 = 0)

“Nearest” Riemann sheet to the “physical axis” Im E (MeV) Re E (MeV) (p, p, p, p, p, p)(u, p, p, p, p, p)(u, u, p, p, p, p)(u, u, u, p, p, p)(u, u, u, u, p, p) (u, u, u, u, u, p) (u, u, u, u, u, u) (u, u, p, u, p, p)  N (ch.1)  N (ch.2)  N (ch.4)  (ch.3)  N (ch.5)  N (ch.6) Physical axis = “real world”  N  N  N,  N  N)