Universal Aspects of the Dipole Cross Section in eA and pA Collisions Jamal Jalilian-Marian Institute for Nuclear Theory University of Washington
Perturbative QCD Quarks, gluons (x, Q 2 ) Weak coupling ( s << 1) Collinear factorization Universality Dilute systems
Small X/Large A Large occupation number Coherent state Saturation momentum Q s (x) Gluon Saturation
Semi-Classical QCD Weak coupling ( s << 1) Classical fields + renormalization group Coherence Wilson lines (dipoles) Dense systems
Color Glass Condensate P t < Q s (y) Color Quantum Fluid Q s (y) < P t < Q es (y) Dilute Parton Gas P t > Q es (y) RHIC, LHC, EIC QsQs Q es
QCD: Kinematic Regions Color Glass Condensate –High gluon density –Strong classical fields –Non-Linear evolution: JIMWLK (BK at large N c ) Color Quantum Fluid –Low gluon density –Linear evolution: BFKL –Anomalous dimension (k t factorization) Dilute Parton Gas –Low gluon density –Linear evolution: DGLAP –Collinear factorization
DIS:
DIS Structure Functions
Virtual Photon Production (F.G. + J.J-M. PRD67, 2003)
Virtual Photon Production
Dilepton Production in pA
Models of Dipole Cross Section Golec-Biernat+Wusthoff Bartels+Golec-Biernat+Kowalski Iancu+Itakura+Munier
Models of Dipole Cross Section Iancu, Itakura and Munier hep-ph/
Dilepton Production in dA J.J-M nucl-th/
Dipoles and Hadron Production
Forward Rapidity Hadron Production J.J-M. nucl-th/
From RHIC To EIC RHIC experimental coverage (Ex.: p t = 2 GeV) –y= 0 --> 4 –x 1 ~ > 5x10 -1 –x 2 ~ > Limited p t coverage at large y Convolution EIC: the ultimate CGC machine –x, Q 2 coverage –Luminasity –A dependence –F L, …