High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele INPC 2013, 3 June 2013 qBounce- and PERC-Collaboration |1 > 1.4 peV |3 > 3.32.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
Theories of gravity in 5D brane-world scenarios
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Measures in the distant past precision measurements: what do they provide? precision experiments part of large facilities precision experiments with neutrons.
Hartmut Abele Knoxville, 8 June 2006 Neutron Decay Correlation Experiments.
High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele Vienna, 1 December 2012 qB OUNCE : Spectroscopy of Gravity |1 > 1.4 peV |3 >
Cosmodynamics. Quintessence and solution of cosmological constant problem should be related !
Nuclear Physics UConn Mentor Connection Mariel Tader.
Paik-1 Standard Model And Relativity Test (SMART) Ho Jung Paik, Lvyuan Chen, M. Vol Moody University of Maryland and Inseob Hahn, Konstantin Penanen, Mark.
Hartmut Abele, Technische Universität Wien Bastian Märkisch Hartmut Abele CKM2014 Neutron Beta Decay: Determination of the Weak Axial Vector Coupling.
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Modern Physics LECTURE II.
Wednesday, Mar. 23, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #14 Wednesday, Mar. 23, 2005 Dr. Jae Yu Elementary Particle Properties Forces.
The Neutron Beta-Decay Exploring the properties of fundamental interactions Hartmut Abele Bar Harbor A,B,C,D,…  The Neutron Alphabet.
Phenomenology of bulk scalar production at the LHC A PhD oral examination A PhD oral examination By Pierre-Hugues Beauchemin.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Particle Physics Professor Kay Kinoshita University of Cincinnati.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
Strings: Theory of Everything, Something, or Nothing? Robert N. Oerter.
Geneva, October 2010 Dark Energy at Colliders? Philippe Brax, IPhT Saclay Published papers :
ROY, D. (2011). Why Large Hadron Collider?. Pramana: Journal Of Physics, 76(5), doi: /s
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Lecture 15: Beta Decay 23/10/2003 Neutron beta decay: light particles or “leptons”, produced in association. Neutrino presence is crucial to explain.
CERN, January 2009 Evading the CAST bound with a chameleon Philippe Brax, IPhT Saclay.
Relic Neutrinos as a Source of Dark Energy Neal Weiner New York University IDM04 R.Fardon, D.B.Kaplan, A.E.Nelson, NW What does dark energy have to do.
Standard Model A Brief Description by Shahnoor Habib.
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
1 Martin L. Perl SLAC National Accelerator Laboratory Holger Mueller Physics Department, University California-Berkeley Talk.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Varying fundamental constants - a key property and key problem of quintessence.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
INSTITUT MAX VON LAUE - PAUL LANGEVIN V.V.Nesvizhevsky QUARKS-2008 Neutron scattering and extra short-range interactions - Neutron constraints.
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
Modern Physics. Reinventing Gravity  Einstein’s Theory of Special Relativity  Theorizes the space time fabric.  Describes why matter interacts.  The.
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
STANDARD MODEL class of “High Energy Physics Phenomenology” Mikhail Yurov Kyungpook National University November 15 th.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
Compelling Scientific Questions The International Linear Collider will answer key questions about matter, energy, space and time We now sample some of.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
“Planck 2009” conference Padova May 2009 Facing Dark Energy in SUGRA Collaboration with C. van de Bruck, A. Davis and J. Martin.
03/31/2006S. M. Lietti - UED Search at SPRACE 1 Universal Extra Dimensions Search at SPRACE S. M. Lietti DOSAR Workshop at U.T. Arlington.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
More on the Standard Model Particles from quarks Particle interactions Particle decays More conservation laws Quark confinement Spin.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
XXXVI th Recontres de Moriond Very High Energy Phenomena in the Universe 22 January 2001 Ephraim Fischbach Department of Physics Purdue University, West.
Collider Signals of Extra Dimension Scenarios
PROTOPHOBIC FIFTH FORCE
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Searching for in High Mass Dilepton Spectrum at CDF, Fermilab ADD model Drell-Yan production of a graviton of varying string scale M S = M Pl(4+n) [4]
The Constancy of Constants. Dirac’s Large Number Hypothesis “A New Basis for Cosmology” Proceedings of the Royal Society of London, A165, 199 (1938) Ratio.
ANTIHYDROGEN Gravitational States above material surface A. Voronin P.Froelich V.Nesvizhevsky.
qBOUNCE: a quantum bouncing ball gravity spectrometer
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Gravitational Quantum States of Antihydrogen
dark matter Properties stable non-relativistic non-baryonic
cosmodynamics quintessence fifth force
Search For New Physics Chary U of S.
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

High Precision Experiments with Cold and Ultra-Cold Neutrons Hartmut Abele INPC 2013, 3 June 2013 qBounce- and PERC-Collaboration |1 > 1.4 peV |3 > 3.32 peV a, A, B, C

Show Case I: Test of Gravitation at Short Distances with Quantum I nterference Julio Gea-Banacloche, Am. J. Phys.1999 Quantum interference: sensitivity to fifth forces Hartmut Abele, Atominstitut, TU Wien Time Rafael Reiter, Bernhard Schlederer, David Sepp Simulation: Reiter, Schlederer, Seppi Height, 40 µm

Quantum interference: sensitivity to fifth forces coming from extra dimensions string theories (higher dimensional field theories) axion fields at short distances 3 qB OUNCE the dynamics of ultra-cold neutrons in the gravity potential the free Fall Theory: Kajari et al., Inertial and gravitational mass in quantum mechanics, Appl. Phys. B 100, 43 (2010) Julio Gea-Banacloche, Am. J. Phys.(1999) H.A. et al., PRD (2010)

Key Technique: Gravity Resonance Spectroscopy 4 atomic clocks nuclear magnetic resonance spectroscopy spin echo technique quantum metrology gamma resonance spectroscopy Test Newton‘s law at short distances: String Theories Dark Matter Dark Energy |1 > 1.4 peV |3 > 3.32 peV Nature Physics, 1 June 2011 High Precision - Low Energy Hartmut Abele, Atominstitut, TU Wien

Hartmut Abele, Technische Universität München 5 Hartmut Abele 5 Quantum Bounce ? Cold-Source at 40 K Hydrogen Atom -Electron bound in proton potential -Bohr radius = 1 A -Ground state energy of 13 eV -3 dim. -Schrödinger Equ. -Legrendre Polynomials System Neutron & Earth -Neutron bound in the gravity potential of the earth - = 6 µm -Ground state energy of 1.4 peV -1 dim. -Schrödinger Equ. -Airy Functions

Gravity and Quantum Mechanics 6 Schrödinger equation : boundary conditions: with 2nd mirror at height Solutions: Airy-functions: Ai & Bi EnEn EnEn 1 st state 1.41peV 2 nd state 2.46peV2.56peV 3 rd state 3.32peV4.2 peV V [peV]

Rabi-Gravity-Spectroscopy GRS: T.J., H.A. et al., Nature Physics |1 > 1.4 peV |3 > 3.32 peV a 2-level system can be considered as a Spin ½ - System Vibrating mirror Alternating Magnetic gradient fields QS: V.N., H.A. et al., Nature 2002

Gravity Resonance Spectroscopy -Quantum states in the gravity potential of the earth and coherence superposition Search for deviations from Newtons gravity law at short distances -Large extra dimensions -Dark matter particles -Dark energy Tests of weak interaction with neutron beta-decay experiments -New results published (UCNA, PERKEO) -Experiment PERC, Nab Scientific Programme /Broad overview of the field Outline 8

Frequency Reference for Gravitation Hartmut Abele, Vienna University of Technology 9 |1 > 1.4 peV |3 > 3.32 peV Based on natural constants: ⁻Mass of the neutron m ⁻Planck constant ħ ⁻Acceleration of earth g ⁻ Based on 2 natural constants : ⁻Mass of the neutron m ⁻Planck constant ħ Plus Acceleration of earth g

Neutrons test Newton Strength  Range 10 For a neutron with mass m n, gravitational constant G, mass m E and density  of the earth with radius R E (r = R E + z), V(r) is usually approximated by

Discoveries: the dark universe Spectroscopy of Gravity -It does not use electromagnetic forces -It does not use coupling to em Potential Hyothetical gravity-like forces - Axions? - Chameleons? constraint on any possible new interaction 11 Axion Sensitivity: eV Scale

Cosmological Parameters Hart mut Abe le, TU Wie n 12

Neutrons test Newton Strength  Range 13 Hypothetical Gravity Like Forces Extra Dimensions: The string and D p -brane theories predict the existence of extra space-time dimensions Infinite-Volume Extra Dimensions: Randall and Sundrum Exchange Forces from new Bosons: a deviation from the ISL can be induced by the exchange of new (pseudo)scalar and (pseudo)vector bosons Axion → 0.2 µm < < 0.2 cm Scalar boson. Cosmological consideration Bosons from Hidden Supersymmetric Sectors Gauge fields in the bulk (ADD, PRD 1999) →10 6 <  < 10 9 Supersymmetric large Extra Dimensions (B.& C.) →  < 10 6 Chameleon fields-

Chameleon fields, Brax et al. PRD 70, (2004) 2 Parameters , n Dark Energy – Scalar Fields 14

Bounds on coupling  -By comparing transition frequency with theoretical expectation: -as long as  > Cite as: arXiv: v1 qBounce and Chameleons

Applications II: Strongly coupled chameleons 16 A.N. Ivanov et.al., arXiv: (2012) T. Jenke et.al., arXiv: (2012) T. Jenke, ÖPG 2012

Chameleon fields, Brax et al. PRD 70, (2004) 2 Parameters , n Dark Energy – Scalar Fields 17

Limits on Axions SM: 0 <  EDM neutron→  < Axion: Spin-Mass coupling g s g p /ħc:  J. E. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

AXION: PDG Exclusion Ranges 19

PDG Exclusion Ranges on Axion masses 20 ← ←

Applications I: Spin-dependant short-ranged interactions 21 discovery potential [Setup 2010]: J.E. Moody, F. Wilczek, Phys. Rev. D30, (1984) 3 days of beamtime T. Jenke et.al., arXiv: (2012) T. Jenke, ÖPG 2012

Casimir Force Atom Example Rb r = 1 Micron Neutron: Casimir force absent Polarizability extremely small: 22

Priority Programme 1491 Research Area A: CP-symmetry violation and particle physics in the early universe -Neutron EDM  E = eV Research Area B: The structure and nature of weak interaction and possible extensions of the Standard Model -Neutron  -decay V – A Theory Research Area C: Relation between gravitation and quantum theory -Neutron bound gravitational quantum states Research Area D: Charge quantization and the electric neutrality of the neutron -Neutron charge Research Area E: New measuring techniques -Particle detection -Magnetometry -Neutron optics

24 Parameters Strength: G F Quark mixing: V ud Ratio: = g A /g V Observables Lifetime  Correlation A Correlation B Correlation C Correlation a Correlation D Correlation N Correlation Q Correlation R Beta Spectrum Proton Spectrum Polarized Spectra Beta Helicity Electron Proton Neutrino Neutron Spin A B C a D R N Neutron Alphabet deciphers the SM High Precision - Low Energy Hartmut Abele, Atominstitut, TU Wien R Q

25 a,A  = g A / g V A +   V ud from CKM matrix A + B +   Right Handed Currents (RHC)? Neutron Alphabet deciphers the SM WLWL WRWR

Grand Challenges II for ESS 26 Sensitive to any theory beyond the Standard Model Left Right Symmetry Supersymmetry Tensor or scalar interactions GUT

Recent Results: PERKEO Collaboration 27 A =  (5) A PII =  (4) PII =  (13) error: 8.6×10  4 Electron Asymmetry A: Prog. Part. Nucl. Phys 60, 1-81 (2008) Proton Asymmetry C: Neutrino Asymmetry B: B = (50) Schumann et a. PRL 99, (2007) PERKEO II combined: first precision measurement C =  (36) Schumann et al., PRL 100, (2008)

(200), PDG (1960) (200), PDG (1975) (40), PDG (1990) (38), Gatchina (1997) (40), M, ILL (1997) (30), PERKEO II (1997) (47), Gatchina, ILL (2001) (19), PERKEO II (2002) (13), HD, ILL (2006) − (+409)(−445), UCNA (2011) (30), UCNA (2013) PERKEO II (2013) a bit history:  from neutron  -decay

Close to Publication NIST Mz, ILL PERKEO UHD, ILL, TUW New Instruments Nab, PERC Hartmut Abele, Atominstitut, Vienna University of Technology 29

Hartmut Abele, Technische Universität München 30 Table 1: Error budget of PERC in standard configuration. The numbering in this list is the same as in Sections 4.1 to 4.5. SOURCE OF ERRORCOMMENT SIZE OF CORRECT. SIZE OF ERROR: non-uniform n-beam for ΔΦ/Φ = 10 % over 1 cm width 2.5·10 −4 5·10 −5 other edge effects on e/p-window for worst case at max. energy 4·10 −4 1·10 −4 magn. mirror effect, contin's n-beam 1.4·10 −2 2·10 −4 magn. mirror effect, pulsed n-beam for ΔB/B = 10 % over 8 m length 5·10 −5 <10 −5 non-adiabatic e/p-transport 5·10 −5 background from n-guide }is separately measurable 2∙10 −3 1·10 −4 background from n-beam stop 2·10 −4 1·10 −5 backscattering off e/p-window 2·10 −5 1·10 −5 backscattering off e/p-beam dump 5∙10 −5 1∙10 −5 backscatt. off plastic scintillator }for worst case 2∙10 −3 4·10 −4 ~ same with active e/p-beam dump − 1·10 −4 neutron polarisation present status 3·10 −3 1·10 −3 Dubbers, Baessler, Märkisch, Schumann, Soldner, Zimmer, H.A., arXiv 2007

v- selector Spin flipper Polarizer Decay Volume, 8m Chopper Beam stop Analyzing area A clean, bright and versatile source of neutron decay products Univ.Heidelberg & TU Wien, Mainz, ILL,FRM2,TU Munich n-guide + solenoid: field B 0 polarized, monochromatic n-pulse n + γ-beam stop solenoid, field B1 solenoid, field B 2 p+ + e− window-frame p+ + e− beam D. Dubbers, H. A., S. Baeßler, B. Maerkisch, M. Schumann, T. Soldner, O. Zimmer, arXiv: Key Instrument: PERC High Flux :  = 2 x cm -2 s -1  Decay rate of 1 MHz / metre Polarizer: 99.7 ± 0.1 % Spin Flipper: ± 0.1 % Analyzer: 100 % 3 He-cells

v- selector Spin flipper Polarizer Decay Volume, 8m Chopper Beam stop e,p selector Analyzing area Bastian Maerkisch, Univ.Heidelberg TU Wien, FRM2, TUM, ILL, PERC: A clean, bright and versatile source of neutron decay products n-guide + solenoid: field B0 polarized, monochromatic n-pulse n + γ-beam stop solenoid, field B1 solenoid, field B2 p+ + e− window-frame p+ + e− beam

Progress Report with Galileo in Quantum Land -qBounce: first demonstration of the quantum bouncing ball -Realization of Gravity Resonance Spectroscopy: -New Tool for -A Search for a deviation from Newton‘s Law at short distances, where polarizability effects are extremely small, -A quantum test of the equivalence principle -Direct best limits on axion coupling at short distances, -Chameleon limits 5 orders of magnitude better than from other methods (arXiv: ) -New results for A, from UCNA, PERKEO qB OUNCE Summary 33 Hartmut Abele, Vienna University of Technology

Reserva 34