Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Ch 6.4: Differential Equations with Discontinuous Forcing Functions
Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.5: Autonomous Equations and Population Dynamics Elementary Differential Equations and Boundary Value Problems, 9th edition,
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Ch 6.1: Definition of Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted upon by discontinuous or impulsive.
Ch 6.6: The Convolution Integral
Ch 6.2: Solution of Initial Value Problems
Ch 2.1: Linear Equations; Method of Integrating Factors
中華大學 資訊工程系 Fall 2002 Chap 4 Laplace Transform. Page 2 Outline Basic Concepts Laplace Transform Definition, Theorems, Formula Inverse Laplace Transform.
Boyce/DiPrima 9th ed, Ch 11.2: Sturm-Liouville Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.5: Separation of Variables; Heat Conduction in a Rod Elementary Differential Equations and Boundary Value Problems, 10th.
Differential Equations
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
1 Consider a given function F(s), is it possible to find a function f(t) defined on [0,  ), such that If this is possible, we say f(t) is the inverse.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Ch 2.1: Linear Equations; Method of Integrating Factors A linear first order ODE has the general form where f is linear in y. Examples include equations.
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
GRAPHING VERTICAL TRANSLATIONS OF PARABOLAS. Recall: Vertical Translations  When you add a constant to the end of the equation for a parabola, you translate.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Ch 6.1: Definition of Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted upon by discontinuous or impulsive.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Section 4.1 Laplace Transforms & Inverse Transforms.
Ch 6.2: Solution of Initial Value Problems The Laplace transform is named for the French mathematician Laplace, who studied this transform in The.
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 10.4: Even and Odd Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.2: Review of Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Translation Theorems and Derivatives of a Transform
CHAPTER 4 The Laplace Transform.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Ch 6.1: Definition of Laplace Transform
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Ch 6.3: Step Functions Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations.
Presentation transcript:

Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc. Some of the most interesting elementary applications of the Laplace Transform method occur in the solution of linear equations with discontinuous or impulsive forcing functions. In this section, we will assume that all functions considered are piecewise continuous and of exponential order, so that their Laplace Transforms all exist, for s large enough.

Step Function definition Let c  0. The unit step function, or Heaviside function, is defined by A negative step can be represented by

Example 1 Sketch the graph of Solution: Recall that u c (t) is defined by Thus and hence the graph of h(t) is a rectangular pulse.

Example 2 For the function whose graph is shown To write h(t) in terms of u c (t), we will need u 4 (t), u 7 (t), and u 9 (t). We begin with the 2, then add 3 to get 5, then subtract 6 to get -1, and finally add 2 to get 1 – each quantity is multiplied by the appropriate u c (t) h(t)h(t)

Laplace Transform of Step Function The Laplace Transform of u c (t) is

Translated Functions Given a function f (t) defined for t  0, we will often want to consider the related function g(t) = u c (t) f (t - c): Thus g represents a translation of f a distance c in the positive t direction. In the figure below, the graph of f is given on the left, and the graph of g on the right.

Theorem If F(s) = L{f (t)} exists for s > a  0, and if c > 0, then Conversely, if f (t) = L -1 {F(s)}, then Thus the translation of f (t) a distance c in the positive t direction corresponds to a multiplication of F(s) by e -cs.

Theorem 6.3.1: Proof Outline We need to show Using the definition of the Laplace Transform, we have

Example 3 Find L{ f (t)}, where f is defined by Note that f (t) = sin(t) + u  /4 (t) cos(t -  /4), and

Example 4 Find L -1 {F(s)}, where Solution: The function may also be written as

Theorem If F(s) = L{f (t)} exists for s > a  0, and if c is a constant, then Conversely, if f (t) = L -1 {F(s)}, then Thus multiplication f (t) by e ct results in translating F(s) a distance c in the positive t direction, and conversely. Proof Outline:

Example 5 To find the inverse transform of We first complete the square: Since it follows that