Latest Results from the Alpha Magnetic Spectrometer on the International Space Station Martin Pohl Université de Genève IPA London 21.08.2014.

Slides:



Advertisements
Similar presentations
Memorandum of Understanding & Common Fund Status Report AMS Technical Interchange Meeting CERN, 27 July 2006 Manuel Aguilar-Benítez, CIEMAT, Madrid - Spain.
Advertisements

Simonetta gentile, ICRC03, Tsukuba, Japan. 1 The Alpha Magnetic Spectrometer on the International Space Station Simonetta Gentile Università di Roma La.
AMS-02 data and open questions T. Shibata Aoyama-Gakuin University, Japan CTA 研究会 (03/Sep./2013)
Nov 30-Dec 5, 2004RICH2004 Int. Workshop, Playa Del Carmen, MexicoM. Buénerd 1 THE CHERENKOV IMAGER of the AMS02 EXPERIMENT The AMS RICH collaboration:
Strangelets and nuclearites—an overview
The Results of Alpha Magnetic Spectrometer (AMS01) Experiment in Space Behcet Alpat I.N.F.N. Perugia TAUP 2001 Laboratori Nazionali del Gran Sasso, Italy.
AMS Discoveries Affecting Cosmic-Ray SIG Priorities Eun-Suk Seo Inst. for Phys. Sci. & Tech. and Department of Physics University of Maryland AAS HEAD.
Computing Strategy of the AMS-02 Experiment B. Shan 1 On behalf of AMS Collaboration 1 Beihang University, China CHEP 2015, Okinawa.
Implication of recent cosmic ray data Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Hong Li, Jie Liu, Bing Zhang & Xinmin Zhang.
AMS (Alpha Magnetic Spectrometer) & Auger Observatory Enrique Zas Instituo Gallego de Física de Altas Energías Santiago de Compostela January 12, 2009.
E. Finch-SQM 2006 Strangelets: Who is Looking (and how?) Evan Finch Yale University March 29, 2006.
PAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Performance of AMS-02 on the International Space Station DESY Theory Workshop, Hamburg Melanie Heil Supported by the Carl-Zeiss Foundation.
Davide Vitè - MInstPhys CPhys Particle Physics 2000, Edimburgh, 12 April AMS the Anti-Matter Spectrometer n The past:10 days on Discovery n The.
CHARGED PARTICLE OBSERVATION from ‘SPACE’ European Astroparticle Physics Meeting Munich, November 23-25, 2005 M. Bourquin, University of Geneva.
May, PPC07, College Station, W. de Boer, Univ. Karlsruhe1 The AMS experiment.
D. VITE' - AMS Genève Cartigny, AMS the Anti-Matter Spectrometer n The past:  1999 n The present:2000 n The future: and beyond… n.
Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7 th 2011.
Journée de réflexion du DPNC Cartigny – July 2, 2004 Mercedes Paniccia Université de Genève The Construction of AMS.
GAM Aachen, July 17, 2003 AMS, M.Sapinski Dark Matter with AMS-02 Aachen, 17 July 2003 Mariusz Sapinski (Groupe d’ Astroparticules de Montpellier, CNRS/IN2P3)
Search for Cosmic Antiparticles First Workshop on Underground experiments and Astroparticle physics October 23, 2002 Eun-Suk Seo University of Maryland.
ICHEP 2010, Paris, July 2010 Antiparticle Detection in Space for Dark Matter Search: the PAMELA Experiment Oscar Adriani University of Florence INFN.
Dark matter searches by charged cosmic rays detection in space ROBERTA SPARVOLI ROME “TOR VERGATA” UNIVERSITY AND INFN, ITALY PCC CERN.
NLB predictions of the positron fraction compared with the observations Antiproton production kinematics Spectral Intensities of Antiprotons and the lifetime.
1 Astroparticle Physics with AMS-02 Dr. C.Sbarra INFN-Bologna, Italy On behalf of the AMS collaboration 12th Lomonosov Conference, Moscow 2005.
09/09/2002Nacho Sevilla Noarbe. AMS.1 Circa 500 BC circa 2000 AD.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Aspen 4/28/05Physics at the End of the Galactic Cosmic Ray Spectrum - “Below the Knee” Working Group “Below the Knee” Working Group Report - Day 3 Binns,
Antimatter in Space Antimatter in Space Mirko Boezio INFN Trieste, Italy PPC Torino July 14 th 2010.
Highlights of space sensor developments in Spain 1st SPACERAD meeting Brussels, 12 November 2002.
Department of Energy Office of Science Report from US Department of Energy Office of High Energy Physics Presented at the ASPERA Roadmap Workshop in Amsterdam.
Lake Louise - February Detection & Measurement of gamma rays in the AMS-02 Detector J. Bolmont - LPTA - IN2P3/CNRS Montpellier - France.
Lake Louise Winter Institute, 23rd February, Cosmic Ray Velocity and Electric Charge Measurements in the AMS experiment Luísa Arruda on behalf of.
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
1 PEBS Prototype PERDaix was launched in October 2010 from Kiruna, Sweden.
COSMIC RAY PHYSICS WITH AMS Joseph Burger MIT On behalf of the AMS-02 collaboration EPS2003 Aachen Particle Astrophysics July 17, 2003
Antimatter What is Antimatter?  You cannot define antimatter without the speaking of matter.  Antimatter is equal and opposite to matter.  Since the.
Simonetta Gentile Rencontres du Vietnam,Hanoi 2004 Cosmic Ray Physics with the Alpha Magnetic Spectrometer Simonetta Gentile Università di Roma La Sapienza,
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) Maria Ionica I.N.F.N. Perugia International School.
KIAA-WAP, Peking U 2015/9/28 Implications on CRs and DM from the AMS-02 results Xiao-Jun Bi ( 毕效军 ) Center for Particle and Astrophysics IHEP, Beijing.
Cosmic Ray Study The PAMELA Experiment Piergiorgio Picozza INFN and University of Rome Tor Vergata 23 rd European Cosmic Ray Symposium Moscow, Russia July.
The Alpha Magnetic Spectrometer (AMS) Experiment.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
Computing Strategy of the AMS-02 Experiment V. Choutko 1, B. Shan 2 A. Egorov 1, A. Eline 1 1 MIT, USA 2 Beihang University, China CHEP 2015, Okinawa.
High Energy cosmic-Radiation Detection (HERD) Facility onboard China’s Space Station Shuang-Nan Zhang ( 张双南 ) Center for Particle Astrophysics.
Direct measurements of cosmic rays in space ROBERTA SPARVOLI ROME “TOR VERGATA” UNIVERSITY AND INFN, ITALY Vulcano Workshop 2014 Vulcano Island (Italy),
Computing Strategy of the AMS-02 Experiment
Dark matter search at HERD X.-J. Bi Institute of High Energy Physics 3 nd Workshop of Herd. Xi’an,
AMS MONITORING INTERFACE P. Zuccon, G. Alberti INFN Sezione di Perugia Computing in High Energy Physics October 2010 – Taipei, Taiwan.
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
ISCRA – Erice July 2004 Ana Sofía Torrentó Coello - CIEMAT THE AMS EXPERIMENT Ana Sofía Torrentó Coello – CIEMAT (Spain) On behalf of AMS Collaboration.
DAMPE: now in orbit G. Ambrosi – DAMPE coll.. DAMPE: now in orbit G. Ambrosi – DAMPE coll.
1 A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments.
Antiproton and Electron Measurements and Dark Matter Searches
Topics on Dark Matter Annihilation
Understanding CRs with Space Experiments
Latest results of the AMS Experiment NCTS Annual Theory Meeting
Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station G. LA VACCA University of Milano-Bicocca.
The PAMELA space experiment: results after seven years in orbit Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration INFN-Space/3,
DAMPE: first data from space
INFN e Università di Roma Tor Vergata
Can dark matter annihilation account for the cosmic e+- excesses?
Cosmic-Rays Astrophysics with AMS-02
for the PAMELA collaboration
Implications of new physics from cosmic e+- excesses
AMS : A COSMIC RAY OBSERVATORY ON THE INTERNATIONAL SPACE STATION Carlo Bosio INFN - Roma ‘La Sapienza’ University Susy June 2004.
Nicolo’ Masi, Andrea Tiseni TOF Group Bologna
Presentation transcript:

Latest Results from the Alpha Magnetic Spectrometer on the International Space Station Martin Pohl Université de Genève IPA London

USA MIT - CAMBRIDGE NASA GODDARD SPACE FLIGHT CENTER NASA JOHNSON SPACE CENTER UNIV. OF HAWAII UNIV. OF MARYLAND - DEPT OF PHYSICS YALE UNIVERSITY - NEW HAVEN MEXICO UNAM FINLAND UNIV. OF TURKU FRANCE LUPM MONTPELLIER LAPP ANNECY LPSC GRENOBLE GERMANY RWTH-I. KIT - KARLSRUHE ITALY ASI IROE FLORENCE INFN & UNIV. OF BOLOGNA INFN & UNIV. OF MILANO-BICOCCA INFN & UNIV. OF PERUGIA INFN & UNIV. OF PISA INFN & UNIV. OF ROMA INFN & UNIV. OF TRENTO NETHERLANDS ESA-ESTEC NIKHEF RUSSIA ITEP KURCHATOV INST. SPAIN CIEMAT - MADRID I.A.C. CANARIAS. SWITZERLAND ETH-ZURICH UNIV. OF GENEVA CHINA CALT (Beijing) IEE (Beijing) IHEP (Beijing) NLAA (Beijing) SJTU (Shanghai) SEU (Nanjing) SYSU (Guangzhou) SDU (Jinan) KOREA EWHA KYUNGPOOK NAT.UNIV. PORTUGAL LAB. OF INSTRUM. LISBON ACAD. SINICA (Taipei) CSIST (Taipei) NCU (Chung Li) TAIWAN TURKEY METU, ANKARA AMS collaboration 16 Countries, 60 Institutes and 600 Physicists

3 GeV TeV PeV EeV ZeV Pamela AMS AMS CALET CREAM DAMPEHERD AugerJEM-EUSO Standard origin: spectrum spectrum chemical and isotopic composition chemical and isotopic composition sources and acceleration mechanism sources and acceleration mechanism Non-standard origin: dark matter dark matter residual antimatter residual antimatter Acceptance × exposure determines energy reach! Cosmic Ray Measurements

6 15ft x 12ft x 9ft 7.5 tons

TRD TOF Tracker TOF RICH ECAL TRD Identify e +, e - Silicon Tracker Z, P Z, P ECAL E of e +, e -, γ RICH Z, E Z, E TOF Z, P are measured independently by the Tracker, RICH, TOF and ECAL Z, P are measured independently by the Tracker, RICH, TOF and ECAL AMS: GeV to TeV precision multipurpose spectrometer Magnet Magnet±Z

AMS-02 Launch After 12 years of construction, integration, test… STS-134 Endeavour: Successful launch: May 16, 2011, 14:56Successful launch: May 16, 2011, 14:56 Docking with ISS: May 17, 17:59Docking with ISS: May 17, 17:59 AMS installation complete: May 19, 11:46AMS installation complete: May 19, 11:46 AMS up and running: May 19, 16:38AMS up and running: May 19, 16:38 First He nucleus: May 19, 16:42First He nucleus: May 19, 16:42 In 3 years AMS has collected 50 billion cosmic rays, much more than all cosmic rays collected over the last century. Every day there are 44 million more…

Positron Fraction = Φ(e + ) / [Φ(e + ) + Φ(e - )] Diffuse background Additional source? Experimental situation before AMS

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis, 26th ICRC Salt Lake City (1999) astro-ph/ ; H. Cheng, J. Feng and K. Matchev, Phys. Rev. Lett. 89 (2002) ; S. Profumo and P. Ullio, J. Cosmology Astroparticle Phys. JCAP07 (2004) 006; D. Hooper and J. Silk, Phys. Rev. D 71 (2005) ; E. Ponton and L. Randall, JHEP 0904 (2009) 080; G. Kane, R. Lu and S. Watson, Phys. Lett. B681 (2009) 151; D. Hooper, P. Blasi and P. D. Serpico, JCAP (2009) ; B2 Y–Z. Fan et al., Int. J. Mod. Phys. D19 (2010) 2011; M. Pato, M. Lattanzi and G. Bertone, JCAP 1012 (2010) 020.  +  e + + …. m  =800 GeV Diffuse secondary positrons Dark Matter model based on I. Cholis et al., arXiv: m  =400 GeV e ± energy [GeV] e + /(e + + e - ) Positron fraction Physics of Positron Fraction

Tracker Entry Tracker Exit 0.33 X 0 Tracker Total 0.50 X 0 a) Minimal material in the TRD and TOF So that the detector does not become a source of e +. b) A magnet separates TRD and ECAL so that e + produced in TRD will be swept away and not enter ECAL In this way the rejection power of TRD and ECAL are independent c) Matching momentum of 9 tracker planes with ECAL energy measurements Separation Power for p/e + >10 6 TRD TOF Tracker TOF RICH ECAL e+e+ e+e+ p p TRD: p/e + rejection > 10 2 ECAL: p/e + rejection > 10 4 Beischer et al., NJP 11 (2009)

TRD: identifies electron AMS data on ISS: 424 GeV positron MAGNET Tracker and Magnet: measure momentum front view 1 MAGNET ACC ECAL: identifies electron and measures its energy RICH charge of electron Selected for a Viewpoint in Physics and an Editors’ Suggestion Aguilar,M. et al (AMS Collaboration) Phys. Rev. Lett. 110, (2013) “First Result from the AMS on the ISS: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of GeV”

AMS-02 (6.8 million e +, e − events) 2013 Positron fraction e ± energy [GeV] Positron fraction e + /(e + + e - ) decreases up to 10 GeV, as expected Positron fraction e + /(e + + e - ) decreases up to 10 GeV, as expected Then steadily increases from 10 to ~250 GeV Then steadily increases from 10 to ~250 GeV But the slope decreases by a factor of 10 But the slope decreases by a factor of 10 Smooth spectrum, no structure Smooth spectrum, no structure

AMS Positron Fraction Low energy measurements include HEAT, CAPRICE, TS93 …

Interpretation example: DM DM  τ + τ - Andrea De Simone, Antonio Riotto, Wei Xuec CERN-PH-TH/ (April 3, 2013) AMS Data: e + fraction AMS expectation: Φ(p) _ _ m DM = 900 GeV σv = 5x cm 3 s -1

Interpretation Example: Single Pulsar Tim Linden and Stefano Profumo arXiv: v1 [astro-ph.HE] 5 Apr 2013 AMS Data: e + fraction Fermi/HESS: e - +e + See also: Cholis and Hooper, arXiv: v1 [astro-ph.HE] 6 Apr 2013

Interpretation Example: Pulsars (+ DM?) Peng-Fei Yin, Zhao-Huan Yu, Qiang Yuan and Xiao-Jun Bi arXiv: v1 [astro-ph.HE] 15 Apr 2013 AMS data: e + fraction Pamela data DAMPE expectation: e - flux Accurate data on shape of cut-off are badly needed

The fluctuations of the positron ratio e + /e − are isotropic. The anisotropy in galactic coordinates: δ ≤ at the 95% confidence level Significance ( ) Galactic coordinates (b,l) 17 More Information: Anisotropy

Annihilation (in Space) Production (at Accelerators) LHC Scattering (Underground Experiments World Wide): LUX DARKSIDE XENON 100 CDMS II … AMS Dark Matter Searches

AMS Positron Fraction Low Energies 11 million electrons and positrons

AMS Positron Fraction High Energies Energy up to 500 GeV

AMS Positron Fraction 2014 vs Minimal Model

 e + = C e +  −  e + + C s  −  s e -E/E s  e - = C e -  −  e - + C s  −  s e -E/E s 08/07/ AMS Positron Fraction 2014 vs Minimal Model

Positron Flux Data (before AMS) Fermi data above 126 GeV are off scale. Positron Flux Scaled by E 3 Prior to AMS

Event Sample: ~ 0.58 million e + events Energy Range: 0.5 GeV to 500 GeV Positron Flux Scaled by E 3 AMS 2014

Fermi data above 100 GeV are off scale Positron Flux Scaled by E 3 AMS 2014

Electron Flux Scaled by E 3 Prior to AMS

27 Electron Flux Scaled by E 3 AMS 2014

Electron+Positron Flux Scaled by E 3 Prior to AMS

Energy Range: 0.5 GeV to 1 TeV Event Sample: ~ 10.5 million e ± events 08/07/2014 Electron+Positron Flux Scaled by E 3 AMS 2014

During lifetime of ISS, AMS expects to collect 300 billion Cosmic Rays Examples of Future Plans

e ± energy [GeV] Positron fraction Pulsars Origin of the positron fraction 31 Collision of cosmic rays m  = 700 GeV Origin of Positron Fraction: Particle Physics or Astrophysics?

Flux of Nuclei: Redundant Charge Measurements Low systematics, control of nuclear fragmentation

Flux of Nuclei: Control of Nuclear Fragmentation

Latest AMS Results and Future Plans: Cosmic rays Proton spectrum Helium spectrum Electron Spectrum Boron Spectrum Carbon Spectrum Boron/Carbon ratio Oxygen Dark Matter Positron Fraction Anisotropy Positron Spectrum Antiproton Ratio Future Plans Positron Fraction Anisotropy Antiproton Ratio Photons Antimatter Search Strangelet Search NLAA – BEIJING (1024 cores) SEU – NANJING (2016 cores) ACAD. SINICA – TAIPEI (3000 cores) CNAF – INFN BOLOGNA (1300 cores) – GENEVA (4000 cores) FZJ – Juelich (2300 cores) IN2P3 – LYON (400 cores) CIEMAT – MADRID (200 cores) AMS Data Analysis Centers