講者: 許永昌 老師 1. Contents 2 Line integrals In Riemann integrals (http://mathworld.wolfram.com/RiemannIntegral.html ), line integrals can be written ashttp://mathworld.wolfram.com/RiemannIntegral.html.

Slides:



Advertisements
Similar presentations
Differential Calculus (revisited):
Advertisements

講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.
講者: 許永昌 老師 1. Contents Prefaces Generating function for integral order Integral representation Orthogonality Reference:
EE3321 ELECTROMAGENTIC FIELD THEORY
Vector integrals Line integrals Surface integrals Volume integrals Integral theorems The divergence theorem Green’s theorem in the plane Stoke’s theorem.
Stokes Theorem. Recall Green’s Theorem for calculating line integrals Suppose C is a piecewise smooth closed curve that is the boundary of an open region.
講者: 許永昌 老師 1. Contents 2 後面幾章的重點 Action: Law of Conservation of mass ( 請預讀 P239) Purpose: Realize the meaning of “conservation”. Realize the significance.
講者: 許永昌 老師 1. Contents Example: rocket Review of Circular Kinematics Action: the cause of the centripetal acceleration Circular orbits vs. Weightlessness.
講者: 許永昌 老師 1. Contents Definition Other forms Recurrence Relation Wronskian Formulas Example: Coaxial Wave Guides 2.
Ch11.4~11.6 (Ch12.3e) Hankel Functions, Modified Bessel Functions, Asymptotic Expansions 講者: 許永昌 老師.
Chapter 1 Vector analysis
Line integrals (10/22/04) :vector function of position in 3 dimensions. :space curve With each point P is associated a differential distance vector Definition.
Mathematics Review A.1 Vectors A.1.1 Definitions
Vector calculus 1)Differential length, area and volume
ELEN 3371 Electromagnetics Fall Lecture 2: Review of Vector Calculus Instructor: Dr. Gleb V. Tcheslavski Contact:
Chapter 9 向量分析 (Vector Analysis)
講者: 許永昌 老師 1. Contents A Little History Newton’s Law of Gravity Little g and Big G Gravitational Potential Energy Satellite Orbits and Energies 2.
PHYSICS-II (PHY C132) ELECTRICITY & MAGNETISM
1 Chapter 2 Vector Calculus 1.Elementary 2.Vector Product 3.Differentiation of Vectors 4.Integration of Vectors 5.Del Operator or Nabla (Symbol  ) 6.Polar.
1 April 14 Triple product 6.3 Triple products Triple scalar product: Chapter 6 Vector Analysis A B C + _.
Ch 1.6e (Ch1.7) Introduction of Divergence F
講者: 許永昌 老師 1. Contents 2 Why do we need the Dirac Delta function? (Example) For a charge q, it builds an electric field We get  E=0 except at r=0.
講者: 許永昌 老師 1. Contents 2 Turning Heat into Work ( 請預讀 P567) Example: The gas do positive work on the piston. W
講者: 許永昌 老師 1. Contents Developing a Charge Model Charges and Materials Charges Atoms and Electricity Charge Conservation and Charge diagram (P795) Insulators.
Prof. David R. Jackson ECE Dept. Fall 2014 Notes 6 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM Group University of Houston 1.
講者: 許永昌 老師 1. Contents Molecular Speeds and Collisions Pressure Temperature Thermal energy and Specific heat Thermal interaction and Heat Irreversible.
講者: 許永昌 老師 1. Contents A “Natural Money” called Energy 但是, money 事實上是 “ 無定的 ” 。 Kinetic Energy and Gravitational Potential Energy Elastic Force and Elastic.
講者: 許永昌 老師 1. Contents Geometric representation Vector addition Multiplication by a scalar Coordinate representation Decomposition and components Vector.
講者: 許永昌 老師 1. Contents Residue Theorem Evaluation of Definite Integrals Cauchy Principle values Some poles on the integral path. Pole expansion of Meromorphic.
講者:許永昌 老師 1. Contents Review of Ch1 Preview of Ch2 Action Exercises (Gotten from R.D. Knight, Instructor Guide) Homework 2.
President UniversityErwin SitompulEEM 6/1 Dr.-Ing. Erwin Sitompul President University Lecture 6 Engineering Electromagnetics
Chapter 15 Vector Analysis. Copyright © Houghton Mifflin Company. All rights reserved.15-2 Definition of Vector Field.
講者: 許永昌 老師 1. Contents ( 起 )Discovering magnetism Compass needle : a probe of Magnetic field ( 承 )Moving charge is the source of magnetic field ( 轉 )The.
講者: 許永昌 老師 1. Contents Absolute and Conditional Convergence Leibniz criterion (for alternating series) Riemann’s Theorem Convergence Test of conditionally.
講者: 許永昌 老師 1. Contents Singular Pole Essential singularities Branch points Zero and root 2.
講者:許永昌 老師 1. Contents I 2 Contents II 3 Contents III 4.
講者: 許永昌 老師 1. Contents A Short Catalog of Forces Identifying Forces Action I Newton’s 2 nd Law Action II Newton’s 1 st Law Free-Body Diagrams 2.
Ch12.3 & 12.4 (Ch11.3e & 12.4e) Orthogonality, Alternate Definitions of Legendre Polynomials 講者: 許永昌 老師.
講者: 許永昌 老師 1. Contents Models of light: Wave Model Ray Model Photon Model Double-slit interference ( 實驗 7) The diffraction grating Single-Slit diffraction.
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
§1.2 Differential Calculus
講者:許永昌 老師 1. Contents Completeness Bessel’s inequality Schwarz Inequality Summary 2.
講者: 許永昌 老師 1. Contents Find the rotational axis of an UCM. Definition Levi-Civita Symbol: p153, Eq Examples Summary 2.
講者: 許永昌 老師 1. Contents Example Projection Axioms: Examples Normal Trajectory Shortest Distance Law of Cosines: C 2 =A 2 +B 2 +2ABcos . 2.
§1.2 Differential Calculus Christopher Crawford PHY 416G
1 Vector Calculus. Copyright © 2007 Oxford University Press Elements of Electromagnetics Fourth Edition Sadiku2 Figure 3.1 Differential elements in the.
President UniversityErwin SitompulEEM 6/1 Lecture 6 Engineering Electromagnetics Dr.-Ing. Erwin Sitompul President University
講者: 許永昌 老師 1. Contents Bernoulli function Euler-Maclaurin Integration Formula Improvement of Convergence Asymptotic Series 2.
In addition to the multiple integral of a function f:R n  R over a region in R n, there are many different types of integrals which can be defined, each.
Divergence Theorem and E-field1 The Divergence Theorem and Electrical Fields © Frits F.M. de Mul.
CHAPTER 14 Vector Calculus Slide 2 © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 14.1VECTOR FIELDS 14.2LINE INTEGRALS.
講者:許永昌 老師 1. Contents Preview of this Chapter 2. Basis used in a curved coordinate Distance Integrals Differential vector Operators 2.
§1.3 Integrals Flux, Flow, Subst Christopher Crawford PHY
講者: 許永昌 老師 1. Contents Find the direction of the maximum change of temperature. Partial Derivative Gradient as a Vector Operator Example p41e (P34) A.
Vector integration Linear integrals Vector area and surface integrals
Chapter 6 Vector Analysis
1.3 Integral Calculus Line, Surface, Volume Integrals.
Geometric Algebra 6. Geometric Calculus Dr Chris Doran ARM Research.
Integration in Vector Fields
Force as gradient of potential energy
Chapter 9 Vector Calculus.
Ch 5.1 Fundamental Concepts of Infinite Series
The Potential Field of a System of Charges: Conservative Property
Ch1.4e (Ch1.5) Triple Scalar Product and Triple Vector Product
AP Calculus BC October 11, 2016.
Math 265 Created by Educational Technology Network
Chapter 6 Vector Analysis
Christopher Crawford PHY
Electricity and Magnetism I
Chapter 17: Line Integrals and Surface Integrals
Presentation transcript:

講者: 許永昌 老師 1

Contents 2

Line integrals In Riemann integrals ( ), line integrals can be written ashttp://mathworld.wolfram.com/RiemannIntegral.html  C V  dr=lim  r i  0  i V(r i )  r i.  C V  dr=  V x dx+  V y dy+  V z dz =  C V // dr =  C Vdr //. NOTE: Physical applications: work, potential, etc. 3

Example P59e (P56) Path-Dependent Work Geometric: The line integrals of path OA & OB =0 because of F(r i )  r i. Algebraic: 4 Force field Path 1 Path 2 O A BC How about a curved path?

Surface Integrals 5

In Riemann integral, ê i  d  = ê i  ndA=dAcos . The projection of the surface.  J  d  =  J x d  x +  J y d  y +  J z d  z. d  x =sign( ) | dydz |. d  y =? d  z =? 6 Example: on the xy plane. êiêi dd

Surface integrals   J z dxdy= 7

Example: electric flux Assume, what is the electric flux through the green surface x 2 +y 2 +z 2 =1 & z  0. 8

Volume Integrals 9 dd

Integral Definitions of Gradient, Divergence and Curl Point  Line  Area  Volume. 10 dd

Integral Definitions of Gradient, Divergence and Curl 11 d  z >0 d  z <0

Summary Line integrals: Surface integrals: Volume integrals: Symbols: dr, d  and d  have told you the dimension of the integration element, you can use only one  to represent the integration. Closed loop: Closed surface: Gradient, divergence and curl can be defined by integrations. P66e (P58). 12

Homework 1.9.3e (1.10.5) 1.9.4e (1.10.6) Essential 那一本其實在內文與 exercises 都有不一樣且 不錯的題目可以練習。 13

1.9 nouns 14