MATRICES. Matrix – Used to store numbers Dimensions: Row x Column (Each entry is called an element)

Slides:



Advertisements
Similar presentations
4.1 Introduction to Matrices
Advertisements

Section 4.2 – Multiplying Matrices Day 2
Matrix Multiplication To Multiply matrix A by matrix B: Multiply corresponding entries and then add the resulting products (1)(-1)+ (2)(3) Multiply each.
Maths for Computer Graphics
Fundamentals of matrices
Section 10.3 – The Inverse of a Matrix No Calculator.
4.2 Operations with Matrices Scalar multiplication.
Problems 1 thru 4 use These matrices..
13.1 Matrices and Their Sums
Warm Up. Multiplying Matrices 6.2 part 2 **Multiply rows times columns. **You can only multiply if the number of columns in the 1 st matrix is equal.
AIM: How do we perform basic matrix operations? DO NOW:  Describe the steps for solving a system of Inequalities  How do you know which region is shaded?
Class Opener:. Identifying Matrices Student Check:
How to Multiply Two Matrices. Steps for Matrix Multiplication 1.Determine whether the matrices are compatible. 2.Determine the dimensions of the product.
Matrices: Simplifying Algebraic Expressions Combining Like Terms & Distributive Property.
3.6 Solving Systems Using Matrices You can use a matrix to represent and solve a system of equations without writing the variables. A matrix is a rectangular.
Multiplying Matrices Algebra 2—Section 3.6. Recall: Scalar Multiplication - each element in a matrix is multiplied by a constant. Multiplying one matrix.
Sec 4.1 Matrices.
Algebra Matrix Operations. Definition Matrix-A rectangular arrangement of numbers in rows and columns Dimensions- number of rows then columns Entries-
2.5 – Determinants and Multiplicative Inverses of Matrices.
Worksheet Answers Matrix worksheet And Matrices Review.
Matrix Multiplication The Introduction. Look at the matrix sizes.
Section 4.3 – Multiplying Matrices. MATRIX MULTIPLICATION 1. The order makes a difference…AB is different from BA. 2. The number of columns in first matrix.
3.6 Multiplying Matrices Homework 3-17odd and odd.
Table of Contents Matrices - Definition and Notation A matrix is a rectangular array of numbers. Consider the following matrix: Matrix B has 3 rows and.
Matrices. Variety of engineering problems lead to the need to solve systems of linear equations matrixcolumn vectors.
4.3 Multiplying Matrices Dimensions matching Rows times Columns.
2.1 Matrix Operations 2. Matrix Algebra. j -th column i -th row Diagonal entries Diagonal matrix : a square matrix whose nondiagonal entries are zero.
Matrices. Matrix A matrix is an ordered rectangular array of numbers. The entry in the i th row and j th column is denoted by a ij. Ex. 4 Columns 3 Rows.
13.4 Product of Two Matrices
Multiplying Matrices.
Christmas Packets are due on Friday!!!
Matrix Operations Free powerpoints at
Matrix Operations.
Unit 1: Matrices Day 1 Aug. 7th, 2012.
Introduction to Matrices
Matrix Operations.
Matrix Operations Free powerpoints at
Matrix Multiplication
Matrix Operations Monday, August 06, 2018.
Matrix Operations.
Matrices and Data Holt Algebra 2.
Multiplication of Matrices
Multiplying Matrices Algebra 2—Section 3.6.
Matrix Operations Free powerpoints at
Multiplying Matrices.
WarmUp 2-3 on your calculator or on paper..
7.3 Matrices.
Introduction to Matrices
All About Matrices.
2. Matrix Algebra 2.1 Matrix Operations.
Matrices Elements, Adding and Subtracting
MATRICES MATRIX OPERATIONS.
( ) ( ) ( ) ( ) Matrices Order of matrices
Section 2.4 Matrices.
2.2 Introduction to Matrices
Section 3.3 – The Inverse of a Matrix
Multiplying Matrices.
Matrices and Data Holt Algebra 2.
3.5 Perform Basic Matrix Operations
Dimensions matching Rows times Columns
3.6 Multiply Matrices.
Chapter 4 Matrices & Determinants
1.8 Matrices.
Matrices.
Matrix A matrix is a rectangular arrangement of numbers in rows and columns Each number in a matrix is called an Element. The dimensions of a matrix are.
1.8 Matrices.
Multiplying Matrices.
Multiplying Matrices.
Matrix Multiplication Sec. 4.2
Multiplying Matrices.
Presentation transcript:

MATRICES

Matrix – Used to store numbers Dimensions: Row x Column (Each entry is called an element)

Types of Matrices Square MatrixColumn MatrixRow Matrix

Determine the dimensions:

A manager has two stores, A & B, that both carry Polo shirts in three colors (Red, White, Blue) and three sizes (Small, Medium, Large). A + B

A manager has two stores, A & B, that both carry Polo shirts in three colors (Red, White, Blue) and three sizes (Small, Medium, Large). A - B

A manager has two stores, A & B, that both carry Polo shirts in three colors (Red, White, Blue) and three sizes (Small, Medium, Large). 2A

Equal Matrices

Let’s Practice!

Homework Worksheet