GSI Helmholtzzentrum für Schwerionenforschung GmbH The Optimized Superconducting Dipole of SIS100 for Series Production ICEC26 March 9th, 2016 GSI Helmholtzzentrum.

Slides:



Advertisements
Similar presentations
JINRs PARTICIPATION IN SIS100 & SIS300 JINRs PARTICIPATION IN SIS100 & SIS300 5 th WORKSHOP on the SCIENTIFIC COOPERATION between GERMAN RESEARCH CENTERS.
Advertisements

Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
19th – 20th of September 2007Cryogenic Expert Meeting at GSI, Jan Patrick Meier1/11 Cryogenic Experts Meeting at GSI, 2007 The SIS 100 Cryogenic Jumper.
Cryogenic Experts Meeting (19 ~ ) Heat transfer in SIS 300 dipole MT/FAIR – Cryogenics Y. Xiang, M. Kauschke.
A.KOVALENKO SUPERCONDUCTING MAGNETS for NICA BOOSTER & COLLIDER NICA ROUND TABLE DISCUSSION - 3 JINR, Dubna, November 05, 2008.
SIS 100 – Fast ramped superconducting magnets E. Fischer, GSI Darmstadt Meeting of the Design Study Committee for the EU contract "DIRACsecondary-Beams"
Development of a Curved Fast Ramped Dipole for FAIR SIS300 P.Fabbricatore INFN-Genova Development of a Curved Fast Ramped Dipole for FAIR SIS300 P.Fabbricatore.
PLANS JINR PARTICIPATION for JINR PARTICIPATION FAIR PROJECT: in the FAIR PROJECT: - ACCELERATOR TECHNOLOGY A.Kovalenko 103 session of the JINR Scientific.
ILC Main Linac Superconducting Cryogen Free Splittable Quadrupole Progress Report V. Kashikhin for Superconducting Magnet Team.
Superconducting Large Bore Sextupole for ILC
Prospects of SC Quadrupole Production at IHEP-Protvino The 2nd Institutes Meeting on International Construction of the FAIR Accelerator Complex Protvino,
Construction of Wendelstein 7-X Max-Planck-Institut für Plasmaphysik
CBM Superconducting Dipole Magnet
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
Status of CEPC Detector magnet
Magnet designs for Super-FRS and CR
MQXF Cold-mass Assembly and Cryostating H. Prin, D. Duarte Ramos, P. Ferracin, P. Fessia 4 th Joint HiLumi LHC-LARP Annual Meeting November 17-21, 2014.
SIS 100 main magnets G. Moritz, GSI Darmstadt (for E. Fischer, MT-20 4V07)) Cryogenic Expert Meeting, GSI, September 19/
September 19/20, 2007 SIS 100 Magnet cooling and cryogenic distribution.
SC magnet developments at CEA/Saclay Maria Durante Hélène Felice CEA Saclay DSM/DAPNIA/SACM/LEAS.
M. Modena, A. Aloev CERN, Geneva, CH “An alternative Super-ferric design for ILC QD0” “LCWS14, 6-10 October 2014 Belgrade.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
Zian Zhu Magnet parameters Coil/Cryostat/Support design Magnetic field analysis Cryogenics Iron yoke structure Mechanical Integration Superconducting Magnet.
19./20. September 2007 Current leads for FAIR Cryogenic Expert Meeting 19./20. September 2007 Birgit Weckenmann.
Superconducting Quadrupoles inside the HERA Experiments M. Bieler, DESY, LHC LUMI 05 Workshop, Arcidosso, September The HERA Interaction Region.
Subscale quadrupole (SQ) series Paolo Ferracin LARP DoE Review FNAL June 12-14, 2006.
GSI Helmholtzzentrum für Schwerionenforschung GmbH LINK EXISTING FACILITY I n order to prepare the existing GSI accelerator facility (mainly the SIS18)
Magnet design issues & concepts for the new injector P.Fabbricatore INFN-Genova Magnet design issues & concepts for the new injector P.Fabbricatore INFN-Genova,
SIS 300 Magnet Design Options. Cos n  magnets; cooling with supercritical Helium GSI 001 existing magnet built at BNG measured in our test facility 6.
Cold testing of rapidly-cycling model magnets for SIS 100 and SIS 300 – methods and results P. Schnizer, E. Fischer, E. Floch, J. Kaugerts, M. Kauschke,
Design and construction of Nuclotron-based Ion Collider fAcility (NICA) and Mixed Phase Detector (MPD) Design and construction of Nuclotron-based Ion Collider.
HIGH RAMP RATE SUPERCONDUCTING MAGNETS AT BNL Peter Wanderer BNL Archamps Workshop, March 2003.
Cold test of SIS-300 dipole model Sergey Kozub Institute for High Energy Physics (IHEP), Protvino, Moscow region, Russia.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
ILC Main Linac Superconducting Quadrupole V. Kashikhin for Superconducting Magnet Team.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
Magnet R&D for Large Volume Magnetization A.V. Zlobin Fermilab Fifth IDS-NF Plenary Meeting 8-10 April 2010 at Fermilab.
Henryk Piekarz SC Magnets at Fermilab HTS Cable Test for a Fast-Cycling Accelerator Dipole Magnet E4R Test Goals and Arrangement Review September 10, 2009.
Thermal screen of the cryostat Presented by Evgeny Koshurnikov, GSI, Darmstadt September 8, 2015 Joint Institute for Nuclear Research (Dubna)
MQXFS1 Test Results G. Chlachidze, J. DiMarco, S. Izquierdo-Bermudez, E. Ravaioli, S. Stoynev, T. Strauss et al. Joint LARP CM26/Hi-Lumi Meeting SLAC May.
Basic Topics for the Design of the SIS100 Quadrupole Modules MAC - 4 December 1 th - 2 nd, 2010 GSI, Darmstadt Egbert Fischer, Pierre Schnizer, Kei Sugita,
Answers to the review committee G. Ambrosio, B.Bordini, P. Ferracin MQXF Conductor Review November 5-6, 2014 CERN.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
Superconducting Cryogen Free Splittable Quadrupole for Linear Accelerators Progress Report V. Kashikhin for the FNAL Superconducting Magnet Team (presented.
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
SAMURAI magnet Hiromi SATO SAMURAI Team, RIKEN Requirements Geometry Magnetic field Superconducting coil and cooling system Present status of construction.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
HTS and LTS Magnet Design and Prototyping for RAON
Max-Planck-Institut für Plasmaphysik 1 ICEC 26- ICMC 2016 March 7-11, 2016, New Delhi, India Michael Nagel Cryogenic commissioning, cool down and first.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Dr. Hans Müller Primary Beams, Dept. SC Magnets and Testing (PB-MT) GSI Helmholtzzentrum für Schwerionenforschung.
Jim Kerby Fermilab With many thanks to Vladimir Kashikhin, the FNAL, KEK, and Toshiba teams. SCRF BTR Split Quadrupole ILC ML & SCRF Baseline Technical.
CBM Dipole Conceptional Design Review
Design ideas for a cos(2q) magnet
Status of the PANDA Solenoid Magnet Production in BINP
CBM magnet overview of the BINP work
Some Design Considerations and R &D of CEPCB Dipole Magnet
Existing Prototype Test Facility (PTF) and planned Series Test Facility Schroeder, Claus Cryo-Review Darmstadt
MQXC Nb-Ti 120mm 120T/m 2m models
HO correctors update Massimo Sorbi and Marco Statera
Agenda 9:00  - Welcome ASG speaker 9:10 -  Introduction -       P.Fabbricatore 9:25 - The D2   magnets in HL-LHC   -  E. Todesco.
Challenges of vacuum chambers with adjustable gap for SC undulators
JINR Experience in SC Magnets
the MDP High Field Dipole Demonstrator
Status of the PANDA Solenoid Magnet Production in BINP
I. Bogdanov, S. Kozub, V. Pokrovsky, L. Shirshov,
Updated concept of the CBM dipole magnet
Status of the PANDA Solenoid Magnet Production in BINP
as a prototype for Super c-tau factory
Presentation transcript:

GSI Helmholtzzentrum für Schwerionenforschung GmbH The Optimized Superconducting Dipole of SIS100 for Series Production ICEC26 March 9th, 2016 GSI Helmholtzzentrum für Schwerionenforschung GmbH C. Roux et al.

GSI Helmholtzzentrum für Schwerionenforschung GmbH Introduction 1.Overview: FAIR, SIS100, dipole module 2.SIS100 Dipoles 1.Basic design 2.First of Series Magnet (FoS) 3.Improvement Strategy 4.First of Series Magnet with New Yoke (FoS-2) Conclusions Outline 2

GSI Helmholtzzentrum für Schwerionenforschung GmbH Dipole module Introduction: FAIR, SIS100, dipole 3 Heavy Ion Synchrotron SIS100 core component 100 Tm rigidity 1 s cycle, ( B max = 1,9 T) 1100 m circumference 108 dipoles, 168 quadrupoles, correctors vacuum quality: < mbar

GSI Helmholtzzentrum für Schwerionenforschung GmbH SIS100 Dipole: Basic Design NUCLOTRON type magnet: Superferric design Hollow superconducting cable Forced-flow two-phase Helium cooling Cold iron (4 K) Requirements: Maximal field: 1.9 T Ramp rate: 4 T/s 1 Hz) Homogeneity better 6×10 -4 within 57.5 x 30 mm (elliptical) ~ 3 m 4 N S ~ 260 mm s.c. coil ~ 330 mm 1 - Cooling tube CuNi 2 - SC wire NbTi 3 - CrNi wire 4 - Kapton tape 5 - Glasfiber tape Nuclotron cable: iron yoke

GSI Helmholtzzentrum für Schwerionenforschung GmbH  First of Series (FoS-1) Production (Middle of 2013)  Testing started in November 2013 SIS100 First of Series Dipole 5 Excellent quench performance Excellent mechanical stability of the coil (alternating quenches in lower and upper poles) Low quench degradation factor no de-training quench performance:

GSI Helmholtzzentrum für Schwerionenforschung GmbH SIS100 First of Series Dipole 6 Parametric model: q h = 4.2±0.5 J q e = 6.0±0.2 J ˑ s  First of Series (FoS-1) Production (Middle of 2013)  Testing started in November 2013 ac losses:

GSI Helmholtzzentrum für Schwerionenforschung GmbH SIS100 First of Series Dipole 7 However: Magnetic-field quality!  First of Series (FoS-1) Production (Middle of 2013)  Testing started in November 2013

GSI Helmholtzzentrum für Schwerionenforschung GmbH Allowed harmonics: accuracy ± 0.2 units Main field: Non-allowed harmonics: z = 0 z = ±300 mm z = ±900 mm R ref = 40 mm NCS Non-allowed harmonics: Rotating coil data FoS-1: Magnetic-Field Integral 8

GSI Helmholtzzentrum für Schwerionenforschung GmbH 9 Egbert Fischer et al. / SC Magnets / MAC-14 Gap geometry measurement tools carrier with capacitive sensors (operational at 4 K): carrier with mechanical sensors:

GSI Helmholtzzentrum für Schwerionenforschung GmbH Gap height 300 K) Gap width with coil 300 K) FoS-1: Gap geometry allowed by spec 10 after intense survey:

GSI Helmholtzzentrum für Schwerionenforschung GmbH  Optimization of welding procedure: laser welding Low heat input Low tension Automated  Lamination stamped to final geometry  Removal of gap between yoke at 300 K Coil clamped within its elastic range Welding seams ~330 mm Cross section (yoke only) Screws ~3 m ~260 mm 11 Overview + > 130 further changes in fabrication and quality issues for series dipoles Welding seams FoS-2: Optimization toward Series Production

GSI Helmholtzzentrum für Schwerionenforschung GmbH Excellent quench performance Excellent mechanical stability of the coil (alternating quenches in lower and upper poles) Low quench degradation factor no de-training 12 Parametric model: q h = 4.2±0.5 J q e = 6.0±0.2 J ˑ s FoS-1,2: Quench behavior and ac losses

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS-2: gap height Side view of yoke: frame welded to lamination – separated – welded again (accidentially) 13 gap height: allowed by spec

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS: comparison FoS-2: Variation of gap height reduced by more than a factor of 2 ! Periodic structure disappeared. Yoke well within specification 14 allowed by spec gap height pole tilt FoS-2: tilt of pole surfaces reduced by more than factor of 3! Periodic structure disappeared.

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS-2: Magnetic field vs. geometry 15 gap heightmagnetic field deviation (relative) Full agreement between measurement of gap height (sensors) and magnetic field (rotating coil)  strong QA tools for series (both data averaged over 600 mm) FoS-2 within specification of ΔB/B < 6×10 -4

GSI Helmholtzzentrum für Schwerionenforschung GmbH After detailed review and analysis of FoS magnet, the optimization for the series production has been done. Geometrical and magnetic-field measurements on FoS-2 magnet showed clear improvement of the manufacturing technology. After successful tests and final check of the production drawings and processes the series production can be released soon. Conclusion 16

GSI Helmholtzzentrum für Schwerionenforschung GmbH 17 Egbert Fischer et al. / SC Magnets / MAC-14 Thank you very much for your attention

GSI Helmholtzzentrum für Schwerionenforschung GmbH 18 Egbert Fischer et al. / SC Magnets / MAC-14

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS: comparison 19 yoke halfes displacement FoS-2: horizontal displacement out of spec but just to be accepted

GSI Helmholtzzentrum für Schwerionenforschung GmbH z-900 B11.93 b a b a30.33 z-300 B11.93 b a b a30.12 z900 B11.93 b a b a33.07 z300 B11.93 b a23.23 b a33.31 z0 B11.93 b a21.42 b a33.04 z1500 B11.04 b a20.24 b a z1500 B11.08 b a b a35.79 Gap height 300 K) Gap width with coil 300 K) CS NCS R ref = 40 mm I = 13.5 kA FoS: Magnetic-Field Local allowed by spec 20 Correlation between local multipoles and magnet-gap geometry

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS-2 AC Loss Parametric model: q h = 4.2±0.5 J q e = 6.0±0.2 J ˑ s 21

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS-2 Quench behavior Excellent quench performance – 2 nd quench above nominal current Excellent mechanical stability of the coil (alternating quenches in lower and upper poles) Low quench degradation factor FoS: even better quench performance – 1 st quench above nominal current No coil degradation after yoke exchange close to SSL (90 %) measurements limited by CS and time FoS-2: 22

GSI Helmholtzzentrum für Schwerionenforschung GmbH SIS100 Dipole: preparation of series production... optimization of series dipoles experience with FoS1 and FoS2 guide to change of fabrication technique of yoke tight QA measures design adjustments (mechanical, thermal, electrical,...) refinement of test procedures for each craft definition of series instrumentation... !!! huge technological step forward from FoS to series dipoles !!! list of changes with > 130 entries to be implemented for series FDR: Egbert Fischer et al. / SC Magnets / MAC-14 23

GSI Helmholtzzentrum für Schwerionenforschung GmbH Introduction: FAIR, SIS100, dipole 24

GSI Helmholtzzentrum für Schwerionenforschung GmbH 25 Egbert Fischer et al. / SC Magnets / MAC-14 nominal current reached after the first quench no de-training after thermal cycling Measured with VI method q h = 4.2±0.5 J q e = 6.0±0.2 J ˑ s

GSI Helmholtzzentrum für Schwerionenforschung GmbH FoS-2 Critical Current Critical current-density of single superconducting wires Fit formula (L. Bottura): Highest current at quench at kA Short sample limit: 17.8 kA Magnet already at 90 % of Short Sample Limit 26

GSI Helmholtzzentrum für Schwerionenforschung GmbH Backup 27 Egbert Fischer et al. / SC Magnets / MAC-14 cable parameters ► the Nuclotron cable is the core component for the fast ramped magnet

GSI Helmholtzzentrum für Schwerionenforschung GmbH Magnet Cooling 28 Egbert Fischer et al. / SC Magnets / MAC-14 ICEC25, July. 2014, Enschede Inlet – sub-cooled helium P in = 1.6 bar, T in = 4.5 K Coil out: P = 1.2 bar, two-pase (4.3 K) Joke out: P = 1.2 bar, two-phase, x = 0.9 – 1.0 Heat load: static:2 W dynamic:up to 50 W Mass flow: defined by the pressure difference P in -P out and by the total heat load hydraulic resistance of cooling channels: cable inner diameter:d = 4.7 mmiron yoke: d = 10 mm dipole:L = 54 m + 54 m P 1, T 1 <Tsl P 3, T 3 T 2 <T 1 He in He out

GSI Helmholtzzentrum für Schwerionenforschung GmbH provided a successfully finalized SAT and completed series FDR Site Acceptance Tests (SAT)12/2015 Final Design Review (FDR)01/2016 Release of series01/2016 First series magnet05/2016 All magnets deliveredQ4/2018 SIS100 Dipole: Series production time schedule Egbert Fischer et al. / SC Magnets / MAC-14 29

GSI Helmholtzzentrum für Schwerionenforschung GmbH Nuclotron type cable with insulated wires – Connect wires in series – By replacing sc. wire, operation current is adjustable.

GSI Helmholtzzentrum für Schwerionenforschung GmbH  Dipole magnet  Superferric magnet 1.9 T, 13 kA  Nuclotron cable, 2 phase helium cooling  Fast ramp magnet 4 T/s  Curved magnet Polyimide insulations NiCr wire Sc strands CuNi tube Iron yok e Coil

GSI Helmholtzzentrum für Schwerionenforschung GmbH 32 Egbert Fischer et al. / SC Magnets / MAC-14 cryostat vessel thermal radiation shield soft iron yoke bus bars suspension rods yoke cooling pipes LHe lines cable and windings 1 - Cooling tube CuNi 2 - SC wire NbTi 3 - CrNi wire 4 - Kapton tape 5 - Glasfiber tape Nuclotron cable: