Chapter Eleven Sampling: Design and Procedures © 2007 Prentice Hall 11-1.

Slides:



Advertisements
Similar presentations
Sampling: Design and Procedures
Advertisements

BASIC SAMPLING ISSUES Nur ÖZKAN Tuğba TURA.
© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
MKTG 3342 Fall 2008 Professor Edward Fox
MISUNDERSTOOD AND MISUSED
Who and How And How to Mess It up
Sampling.
Sampling: Design and Procedures
Fundamentals of Sampling Method
Sampling ADV 3500 Fall 2007 Chunsik Lee. A sample is some part of a larger body specifically selected to represent the whole. Sampling is the process.
Sampling Procedures and sample size determination.
SAMPLING TECHNIQUES.
Sampling Moazzam Ali.
SAMPLING METHODS Chapter 5.
Key terms in Sampling Sample: A fraction or portion of the population of interest e.g. consumers, brands, companies, products, etc Population: All the.
Sampling: Design and Procedures
McGraw-Hill/Irwin McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
Learning Objective Chapter 11 Basic Sampling Issues CHAPTER eleven Basic Sampling Issues Copyright © 2000 by John Wiley & Sons, Inc.
University of Central Florida
Sampling January 9, Cardinal Rule of Sampling Never sample on the dependent variable! –Example: if you are interested in studying factors that lead.
Sampling: Theory and Methods
12-1 Chapter 12 Sampling: Design and Procedure. Copyright © 2011 Pearson Education, Inc. Chapter Focus of this Chapter Relationship to Previous.
7-1 Chapter Seven SAMPLING DESIGN. 7-2 Selection of Elements Population Element the individual subject on which the measurement is taken; e.g., the population.
Learning Objectives Copyright © 2004 John Wiley & Sons, Inc. Basic Sampling Issues CHAPTER Ten.
Basic Sampling & Review of Statistics. Basic Sampling What is a sample?  Selection of a subset of elements from a larger group of objects Why use a sample?
RESEARCH DESIGN (PART 2) Siti Rohaida Bt Mohamed Zainal, PhD
CHAPTER 12 DETERMINING THE SAMPLE PLAN. Important Topics of This Chapter Differences between population and sample. Sampling frame and frame error. Developing.
1 Hair, Babin, Money & Samouel, Essentials of Business Research, Wiley, Learning Objectives: 1.Understand the key principles in sampling. 2.Appreciate.
© 2009 Pearson Education, Inc publishing as Prentice Hall 12-1 Chapter 12 Sampling: Design and Procedure.
Sampling “Sampling is the process of choosing sample which is a group of people, items and objects. That are taken from population for measurement and.
Population and sample. Population: are complete sets of people or objects or events that posses some common characteristic of interest to the researcher.
Chapter Twelve Chapter 12.
Chapter Twelve. Figure 12.1 Relationship of Sampling Design to the Previous Chapters and the Marketing Research Process Focus of This Chapter Relationship.
Lecture 9 Prof. Development and Research Lecturer: R. Milyankova
© 2009 Pearson Education, Inc publishing as Prentice Hall 12-1 Sampling: Design and Procedure Sampling Size.
Chapter Twelve. Defining some terms censusPopulation ElementsSample.
Sampling: Design and Procedures Sample vs. Census Table 11.1.
Sampling Methods. Probability Sampling Techniques Simple Random Sampling Cluster Sampling Stratified Sampling Systematic Sampling Copyright © 2012 Pearson.
Tahir Mahmood Lecturer Department of Statistics. Outlines: E xplain the role of sampling in the research process D istinguish between probability and.
Qualitative and quantitative sampling. Who are they Black/Blue/Green/Red Thin/Bold Smiling/Normal/Sad                        
Learning Objectives Copyright © 2002 South-Western/Thomson Learning Basic Sampling Issues CHAPTER twelve.
Learning Objectives Explain the role of sampling in the research process Distinguish between probability and nonprobability sampling Understand the factors.
Chapter Eleven The entire group of people about whom information is needed; also called the universe or population of interest. The process of obtaining.
Sampling Design and Procedures 7 th Session of Marketing Reseach.
7: Sampling Theory and Methods. 7-2 Copyright © 2008 by the McGraw-Hill Companies, Inc. All rights reserved. Hair/Wolfinbarger/Ortinau/Bush, Essentials.
Chapter Eleven Sampling: Design and Procedures Copyright © 2010 Pearson Education, Inc
Chapter 10 Sampling: Theories, Designs and Plans.
Chapter Ten Copyright © 2006 John Wiley & Sons, Inc. Basic Sampling Issues.
Sampling. Census and Sample (defined) A census is based on every member of the population of interest in a research project A sample is a subset of the.
1. 2 DRAWING SIMPLE RANDOM SAMPLING 1.Use random # table 2.Assign each element a # 3.Use random # table to select elements in a sample.
PRESENTED BY- MEENAL SANTANI (039) SWATI LUTHRA (054)
Sampling Dr Hidayathulla Shaikh. Contents At the end of lecture student should know  Why sampling is done  Terminologies involved  Different Sampling.
Sampling: Design and Procedures
Sampling.
Sampling: Design and Procedures
Population and samples
SAMPLE DESIGN.
Meeting-6 SAMPLING DESIGN
Sampling: Design and Procedures
Sampling: Theory and Methods
Sampling: Design and Procedures
Sampling: Design and Procedures
Sampling: Design and Procedures
Basic Sampling Issues.
SAMPLING TECHNIQUES Shamindra Nath Sanyal 11/28/2018 SNS.
Sampling: Design and Procedures
Sampling: Design and Procedures
CHAPTER eleven Basic Sampling Issues
Ass. Prof. Dr. Mogeeb Mosleh
Presentation transcript:

Chapter Eleven Sampling: Design and Procedures © 2007 Prentice Hall 11-1

© 2007 Prentice Hall The Sampling Design Process Fig Define the Population Determine the Sampling Frame Select Sampling Technique(s) Determine the Sample Size Execute the Sampling Process

© 2007 Prentice Hall Define the Target Population The target population is the collection of elements or objects that possess the information sought by the researcher and about which inferences are to be made. The target population should be defined in terms of elements, sampling units, extent, and time. An element is the object about which or from which the information is desired, e.g., the respondent. A sampling unit is an element, or a unit containing the element, that is available for selection at some stage of the sampling process. Extent refers to the geographical boundaries. Time is the time period under consideration.

© 2007 Prentice Hall Define the Target Population Important qualitative factors in determining the sample size are: the importance of the decision the nature of the research the number of variables the nature of the analysis sample sizes used in similar studies incidence rates completion rates resource constraints

© 2007 Prentice Hall Classification of Sampling Techniques Sampling Techniques Nonprobability Sampling Techniques Probability Sampling Techniques Convenience Sampling Judgmental Sampling Quota Sampling Snowball Sampling Systematic Sampling Stratified Sampling Cluster Sampling Other Sampling Techniques Simple Random Sampling Fig. 11.2

© 2007 Prentice Hall Convenience Sampling Convenience sampling attempts to obtain a sample of convenient elements. Often, respondents are selected because they happen to be in the right place at the right time. use of students, and members of social organizations mall intercept interviews without qualifying the respondents department stores using charge account lists “people on the street” interviews

© 2007 Prentice Hall Judgmental Sampling Judgmental sampling is a form of convenience sampling in which the population elements are selected based on the judgment of the researcher. test markets purchase engineers selected in industrial marketing research bellwether precincts selected in voting behavior research expert witnesses used in court

Judgmental Sampling Purposive sampling is used in cases where the specialty of an authority can select a more representative sample that can bring more accurate results than by using other probability sampling techniques. The process involves nothing but purposely handpicking individuals from the population based on the authority's or the researcher's knowledge and judgment © 2007 Prentice Hall 11- 8

© 2007 Prentice Hall Quota Sampling Quota sampling may be viewed as two-stage restricted judgmental sampling. The first stage consists of developing control categories, or quotas, of population elements. In the second stage, sample elements are selected based on convenience or judgment. PopulationSample compositioncomposition Control CharacteristicPercentagePercentageNumber Sex Male Female ____________

Quota Sampling Quota sampling is useful when - time is limited, - a sampling frame is not available,sampling frame - the research budget is very tight - when detailed accuracy is not important. - Subsets are chosen and then either convenience or judgment sampling is used to choose people from each subset. The researcher decides how many of each category is selected © 2007 Prentice Hall

© 2007 Prentice Hall Snowball Sampling In snowball sampling, an initial group of respondents is selected, usually at random. After being interviewed, these respondents are asked to identify others who belong to the target population of interest. Subsequent respondents are selected based on the referrals.

© 2007 Prentice Hall Simple Random Sampling Each element in the population has a known and equal probability of selection. Each possible sample of a given size (n) has a known and equal probability of being the sample actually selected. This implies that every element is selected independently of every other element.

© 2007 Prentice Hall Systematic Sampling The sample is chosen by selecting a random starting point and then picking every ith element in succession from the sampling frame. The sampling interval, i, is determined by dividing the population size N by the sample size n and rounding to the nearest integer. When the ordering of the elements is related to the characteristic of interest, systematic sampling increases the representativeness of the sample.

© 2007 Prentice Hall Systematic Sampling If the ordering of the elements produces a cyclical pattern, systematic sampling may decrease the representativeness of the sample. For example, there are 100,000 elements in the population and a sample of 1,000 is desired. In this case the sampling interval, i, is 100. A random number between 1 and 100 is selected. If, for example, this number is 23, the sample consists of elements 23, 123, 223, 323, 423, 523, and so on.

© 2007 Prentice Hall Stratified Sampling A two-step process in which the population is partitioned into subpopulations, or strata. The strata should be mutually exclusive and collectively exhaustive in that every population element should be assigned to one and only one stratum and no population elements should be omitted. Next, elements are selected from each stratum by a random procedure, usually SRS. A major objective of stratified sampling is to increase precision without increasing cost.

© 2007 Prentice Hall Stratified Sampling The elements within a stratum should be as homogeneous as possible, but the elements in different strata should be as heterogeneous as possible. The stratification variables should also be closely related to the characteristic of interest. Finally, the variables should decrease the cost of the stratification process by being easy to measure and apply.

© 2007 Prentice Hall Homogeneous within group Heterogeneous across the group

© 2007 Prentice Hall Cluster Sampling The target population is first divided into mutually exclusive and collectively exhaustive subpopulations, or clusters. Then a random sample of clusters is selected, based on a probability sampling technique such as SRS. For each selected cluster, either all the elements are included in the sample (one-stage) or a sample of elements is drawn probabilistically (two-stage).

© 2007 Prentice Hall Cluster Sampling Elements within a cluster should be as heterogeneous as possible, but clusters themselves should be as homogeneous as possible. Ideally, each cluster should be a small-scale representation of the population.

© 2007 Prentice Hall Heterogeneous within group Homogeneous across the group

© 2007 Prentice Hall Choosing Nonprobability Vs. Probability Sampling Table 11.4